IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v141y2017i3d10.1007_s10584-016-1886-8.html
   My bibliography  Save this article

Multimodel assessment of sensitivity and uncertainty of evapotranspiration and a proxy for available water resources under climate change

Author

Listed:
  • Vimal Mishra

    (Civil Engineering, Indian Institute of Technology (IIT) Gandhinagar)

  • Rohini Kumar

    (UFZ-Helmholtz Centre for Environmental Research)

  • Harsh L. Shah

    (Civil Engineering, Indian Institute of Technology (IIT) Gandhinagar)

  • Luis Samaniego

    (UFZ-Helmholtz Centre for Environmental Research)

  • S. Eisner

    (Center for Environmental Systems Research (CESR))

  • Tao Yang

    (Hohai University)

Abstract

Partitioning of precipitation (P) into actual evapotranspiration (ET) and runoff affects a proxy for water availability (P-ET) on land surface. ET accounts for more than 60% of global precipitation and affects both water and energy cycles. We study the changes in precipitation, air temperature, ET, and P-ET in seven large basins under the RCP 2.6 and 8.5 scenarios for the projected future climate. While a majority of studied basins is projected to experience a warmer and wetter climate, uncertainty in precipitation projections remains large in comparison to the temperature projections. Due to high uncertainty in ET, uncertainties in fraction of precipitation that is evaporated (ET/P) and a proxy for available water (P-ET) are also large under the projected future climate. Our assessment showed that under the RCP 8.5 scenario, global climate models are major contributors to uncertainties in ET (P-ET) simulations in the four (six) basins, while uncertainty due to hydrological models is prevailing or comparable in the other three (one) basins. The simulated ET is projected to increase under the warmer and wetter future climates in all the basins and periods under both RCPs. Regarding P-ET, it is projected to increase in five out of seven basins in the End term (2071–2099) under the RCP 8.5 scenario. Precipitation elasticity and temperature sensitivity estimated for ET were found to be positive in all the basins under the RCP 8.5 scenario. In contrast, the temperature sensitivity estimated for (P-ET) was found to be negative for all the basins under the RCP 8.5 scenario, indicating the role of increased energy availability and limited soil moisture. Our results highlight the need for improvements in climate and hydrological models with better representation of soil, vegetation, and cold season processes to reduce uncertainties in the projected ET and P-ET.

Suggested Citation

  • Vimal Mishra & Rohini Kumar & Harsh L. Shah & Luis Samaniego & S. Eisner & Tao Yang, 2017. "Multimodel assessment of sensitivity and uncertainty of evapotranspiration and a proxy for available water resources under climate change," Climatic Change, Springer, vol. 141(3), pages 451-465, April.
  • Handle: RePEc:spr:climat:v:141:y:2017:i:3:d:10.1007_s10584-016-1886-8
    DOI: 10.1007/s10584-016-1886-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-016-1886-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-016-1886-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nigel W. Arnell, 2016. "The global-scale impacts of climate change: the QUEST-GSI project," Climatic Change, Springer, vol. 134(3), pages 343-352, February.
    2. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    3. Nigel Arnell, 2016. "The global-scale impacts of climate change: the QUEST-GSI project," Climatic Change, Springer, vol. 134(3), pages 343-352, February.
    4. Simon Gosling & Nigel Arnell, 2016. "A global assessment of the impact of climate change on water scarcity," Climatic Change, Springer, vol. 134(3), pages 371-385, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grusson, Youen & Wesström, Ingrid & Joel, Abraham, 2021. "Impact of climate change on Swedish agriculture: Growing season rain deficit and irrigation need," Agricultural Water Management, Elsevier, vol. 251(C).
    2. Vimal Mishra & Harsh Shah & M. Rocío Rivas López & Anastasia Lobanova & Valentina Krysanova, 2020. "Does comprehensive evaluation of hydrological models influence projected changes of mean and high flows in the Godavari River basin?," Climatic Change, Springer, vol. 163(3), pages 1187-1205, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sudheer Padikkal & K. S. Sumam & N. Sajikumar, 2018. "Sustainability indicators of water sharing compacts," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(5), pages 2027-2042, October.
    2. Ricart, Sandra & Rico, Antonio M., 2019. "Assessing technical and social driving factors of water reuse in agriculture: A review on risks, regulation and the yuck factor," Agricultural Water Management, Elsevier, vol. 217(C), pages 426-439.
    3. Mónica Maldonado-Devis & Vicent Almenar-Llongo, 2021. "A Panel Data Estimation of Domestic Water Demand with IRT Tariff Structure: The Case of the City of Valencia (Spain)," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    4. Maria Fitzner & Anna Fricke & Monika Schreiner & Susanne Baldermann, 2021. "Utilization of Regional Natural Brines for the Indoor Cultivation of Salicornia europaea," Sustainability, MDPI, vol. 13(21), pages 1-12, November.
    5. Antonio A. Pinto & Susana Fischer & Rosemarie Wilckens & Luis Bustamante & Marisol T. Berti, 2021. "Production Efficiency and Total Protein Yield in Quinoa Grown under Water Stress," Agriculture, MDPI, vol. 11(11), pages 1-18, November.
    6. Babadjanova, Mashkhura & Bobojonov, Ihtiyor & Bekchanov, Maksud & Kuhn, Lena & Glauben, Thomas, 2024. "Can domestic wheat farming meet the climate change-induced challenges of national food security in Uzbekistan?," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 40(3), pages 448-462.
    7. Jiangmei Xiong & Yulin Hswen & John A. Naslund, 2020. "Digital Surveillance for Monitoring Environmental Health Threats: A Case Study Capturing Public Opinion from Twitter about the 2019 Chennai Water Crisis," IJERPH, MDPI, vol. 17(14), pages 1-15, July.
    8. Wijesiri, Buddhi & Hettiarachchi, Akash, 2021. "How gender disparities in urban and rural areas influence access to safe drinking water," Utilities Policy, Elsevier, vol. 68(C).
    9. Rachel Warren & Oliver Andrews & Sally Brown & Felipe J. Colón-González & Nicole Forstenhäusler & David E. H. J. Gernaat & P. Goodwin & Ian Harris & Yi He & Chris Hope & Desmond Manful & Timothy J. Os, 2022. "Quantifying risks avoided by limiting global warming to 1.5 or 2 °C above pre-industrial levels," Climatic Change, Springer, vol. 172(3), pages 1-16, June.
    10. Arathy Nair Geetha Raveendran Nair & Shamla Dilama Shamsudeen & Meera Geetha Mohan & Adarsh Sankaran, 2023. "Basin-Scale Streamflow Projections for Greater Pamba River Basin, India Integrating GCM Ensemble Modelling and Flow Accumulation-Weighted LULC Overlay in Deep Learning Environment," Sustainability, MDPI, vol. 15(19), pages 1-27, September.
    11. Philippe A. Ker Rault & Phoebe Koundouri & Ebun Akinsete & Ralf Ludwig & Verena Huber-Garcia & Stella Tsani & Vicenc Acuna & Eleni Kalogianni & Joke Luttik & Kasper Kok & Nikolaos Skoulikidis & Jochen, 2019. "Down scaling of climate change scenarii to river basin level: A transdisciplinary methodology applied to Evrotas river basin, Greece," DEOS Working Papers 1913, Athens University of Economics and Business.
    12. Samuel Asumadu Sarkodie & Maruf Yakubu Ahmed & Phebe Asantewaa Owusu, 2022. "Global adaptation readiness and income mitigate sectoral climate change vulnerabilities," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-17, December.
    13. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    14. Pascalle Smith & Georg Heinrich & Martin Suklitsch & Andreas Gobiet & Markus Stoffel & Jürg Fuhrer, 2014. "Station-scale bias correction and uncertainty analysis for the estimation of irrigation water requirements in the Swiss Rhone catchment under climate change," Climatic Change, Springer, vol. 127(3), pages 521-534, December.
    15. T.M.L. Wigley, 2018. "The Paris warming targets: emissions requirements and sea level consequences," Climatic Change, Springer, vol. 147(1), pages 31-45, March.
    16. Gong, Ziqian & Baker, Justin S. & Wade, Christopher M. & Havlík, Petr, 2024. "Irrigation intensification in U.S. agriculture under climate change – an adaptation mechanism or trade-induced response?," 2024 Annual Meeting, July 28-30, New Orleans, LA 343581, Agricultural and Applied Economics Association.
    17. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Hossain, Akbar, 2022. "Adaptation strategies to increase water productivity of wheat under changing climate," Agricultural Water Management, Elsevier, vol. 264(C).
    18. Hwang, In Chang, 2013. "Stochastic Kaya model and its applications," MPRA Paper 55099, University Library of Munich, Germany.
    19. Roson, Roberto & Damania, Richard, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity an Assessment of Alternative Scenarios," Conference papers 332687, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    20. Le Bars, Dewi, 2018. "Uncertainty in sea level rise projections due to the dependence between contributors," Earth Arxiv uvw3s, Center for Open Science.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:141:y:2017:i:3:d:10.1007_s10584-016-1886-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.