IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v248y2021ics0378377421000469.html
   My bibliography  Save this article

Effects of the number of drip laterals on yield and quality of apples grown in two soil types

Author

Listed:
  • Lecaros-Arellano, F.
  • Holzapfel, E.
  • Fereres, E.
  • Rivera, D.
  • Muñoz, N.
  • Jara, J.

Abstract

The effects of water distribution patterns in drip irrigation on fruit production and fruit quality were evaluated during two seasons in two commercial orchards of Gala Brookfield apple trees, grafted on M.9 dwarf rootstock. Research was conducted at El Manzano farm, with a clay-loam soil irrigated three times per week, and in Santa Mercedes farm, with a stony loam soil irrigated daily. Both farms are located in the Central Valley of Chile. The farm irrigation system was modified to establish three treatments which differed in the number of drip laterals per row (one, two and four), with 4.0, 2.0, and 1.0 L h−1 emitters spaced at 50 cm in both farms, respectively. All treatments received the same amount of water per week in each farm, based on the technical criteria of the farm advisor. Applied water in each farm was compared against the water use estimated by the AQUASAT platform. In the clay-loam soil, the volume of applied water was similar to the AQUASAT estimate. However, in the stony loam soil applied water was less than that estimated by AQUASAT. The results showed significant differences in production among treatments which varied only in the volume of wetted soil. The best results pooled over the two years were obtained with one lateral per row (T1) in the clay-loam soil (yield of 59.3 t ha−1), and with four laterals per row (T3) in the stony loam soil which yielded 50.8 t ha−1. Higher yields were associated with a tendency of greater fruit numbers per tree in both farms. Fruit quality requirements for export (equatorial diameter > 60 mm, weight > 90 g) were achieved but not the firmness in the second season at the stony loam soil, due to an irrigation deficit. Our results in apple emphasize the need to wet sufficient soil volume under drip irrigation, regardless of irrigation amounts, in light textured soils in particular.

Suggested Citation

  • Lecaros-Arellano, F. & Holzapfel, E. & Fereres, E. & Rivera, D. & Muñoz, N. & Jara, J., 2021. "Effects of the number of drip laterals on yield and quality of apples grown in two soil types," Agricultural Water Management, Elsevier, vol. 248(C).
  • Handle: RePEc:eee:agiwat:v:248:y:2021:i:c:s0378377421000469
    DOI: 10.1016/j.agwat.2021.106781
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421000469
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.106781?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhong, Yun & Fei, Liangjun & Li, Yibo & Zeng, Jian & Dai, Zhiguang, 2019. "Response of fruit yield, fruit quality, and water use efficiency to water deficits for apple trees under surge-root irrigation in the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 222(C), pages 221-230.
    2. Espadafor, M. & Orgaz, F. & Testi, L. & Lorite, I.J. & García-Tejera, O. & Villalobos, F.J. & Fereres, E., 2018. "Almond tree response to a change in wetted soil volume under drip irrigation," Agricultural Water Management, Elsevier, vol. 202(C), pages 57-65.
    3. Girona, J. & Behboudian, M.H. & Mata, M. & Del Campo, J. & Marsal, J., 2010. "Exploring six reduced irrigation options under water shortage for 'Golden Smoothee' apple: Responses of yield components over three years," Agricultural Water Management, Elsevier, vol. 98(2), pages 370-375, December.
    4. Li, Fusheng & Cohen, Shabtai & Naor, Amos & Shaozong, Kang & Erez, Amnon, 2002. "Studies of canopy structure and water use of apple trees on three rootstocks," Agricultural Water Management, Elsevier, vol. 55(1), pages 1-14, May.
    5. Holzapfel, E. & Jara, J. & Coronata, A.M., 2015. "Number of drip laterals and irrigation frequency on yield and exportable fruit size of highbush blueberry grown in a sandy soil," Agricultural Water Management, Elsevier, vol. 148(C), pages 207-212.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Junwei & Xiang, Lingxiao & Zhu, Chenxi & Li, Wuqiang & Jing, Dan & Zhang, Lili & Liu, Yong & Li, Tianlai & Li, Jianming, 2023. "Evaluating the irrigation schedules of greenhouse tomato by simulating soil water balance under drip irrigation," Agricultural Water Management, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Hua & Jianen Gao & Meifang Zhou & Shilun Bai, 2021. "Impacts of Relative Elevation on Soil Nutrients and Apple Quality in the Hilly-Gully Region of the Loess Plateau, China," Sustainability, MDPI, vol. 13(3), pages 1-11, January.
    2. Du, Shaoqing & Kang, Shaozhong & Li, Fusheng & Du, Taisheng, 2017. "Water use efficiency is improved by alternate partial root-zone irrigation of apple in arid northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 184-192.
    3. Chen, Yu & Zhang, Jian-Hua & Chen, Mo-Xian & Zhu, Fu-Yuan & Song, Tao, 2023. "Optimizing water conservation and utilization with a regulated deficit irrigation strategy in woody crops: A review," Agricultural Water Management, Elsevier, vol. 289(C).
    4. Wen, Shenglin & Cui, Ningbo & Wang, Yaosheng & Gong, Daozhi & Xing, Liwen & Wu, Zongjun & Zhang, Yixuan & Zhao, Long & Fan, Junliang & Wang, Zhihui, 2024. "Optimizing deficit drip irrigation to improve yield,quality, and water productivity of apple in Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 296(C).
    5. Li, Zhiming & Duan, Songpo & Ouyang, Xin & Song, Shijie & Chen, Diwen & Fan, Xianting & Ding, Hanqing & Shen, Hong, 2024. "Coupled soil moisture management and alginate oligosaccharide strategies enhance citrus orchard production, water and potassium use efficiency by improving the rhizosphere soil environment," Agricultural Water Management, Elsevier, vol. 297(C).
    6. Gavilan, Pedro & Higueras, José L. & Lozano, David & Ruiz, Natividad, 2024. "The Riego Berry mobile application: A powerful tool to improve on-farm irrigation performance in berry crops," Agricultural Water Management, Elsevier, vol. 292(C).
    7. Zhao, Zhiyuan & Zheng, Wei & Ma, Yanting & Wang, Xianling & Li, Ziyan & Zhai, Bingnian & Wang, Zhaohui, 2020. "Responses of soil water, nitrate and yield of apple orchard to integrated soil management in Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 240(C).
    8. Zhang, Binbin & Su, Shunshun & Duan, Chenxiao & Feng, Hao & Chau, Henry Wai & He, Jianqiang & Li, Yi & Hill, Robert Lee & Wu, Shufang & Zou, Yufeng, 2022. "Effects of partial organic fertilizer replacement combined with rainwater collection system on soil water, nitrate-nitrogen and apple yield of rainfed apple orchard in the Loess Plateau of China: A 3-," Agricultural Water Management, Elsevier, vol. 260(C).
    9. Vanella, Daniela & Peddinti, Srinivasa Rao & Kisekka, Isaya, 2022. "Unravelling soil water dynamics in almond orchards characterized by soil-heterogeneity using electrical resistivity tomography," Agricultural Water Management, Elsevier, vol. 269(C).
    10. Domínguez-Niño, Jesús María & Oliver-Manera, Jordi & Girona, Joan & Casadesús, Jaume, 2020. "Differential irrigation scheduling by an automated algorithm of water balance tuned by capacitance-type soil moisture sensors," Agricultural Water Management, Elsevier, vol. 228(C).
    11. José Manuel Mirás-Avalos & Pedro Marco & Sergio Sánchez & Beatriz Bielsa & María José Rubio Cabetas & Vicente González, 2022. "Soil Quality Index of Young and Differently Managed Almond Orchards under Mediterranean Conditions," Sustainability, MDPI, vol. 14(22), pages 1-14, November.
    12. Lopez, G. & Boini, A. & Manfrini, L. & Torres-Ruiz, J.M. & Pierpaoli, E. & Zibordi, M. & Losciale, P. & Morandi, B. & Corelli-Grappadelli, L., 2018. "Effect of shading and water stress on light interception, physiology and yield of apple trees," Agricultural Water Management, Elsevier, vol. 210(C), pages 140-148.
    13. Zheng, Shunsheng & Jiang, Shouzheng & Cui, Ningbo & Zhao, Lu & Gong, Daozhi & Wang, Yaosheng & Wu, Zongjun & Liu, Quanshan, 2023. "Deficit drip irrigation improves kiwifruit quality and water productivity under rain-shelter cultivation in the humid area of South China," Agricultural Water Management, Elsevier, vol. 289(C).
    14. Wang, Cheng & Bai, Dan & Li, Yibo & Yao, Baolin & Feng, Yaqin, 2021. "The comparison of different irrigation methods on yield and water use efficiency of the jujube," Agricultural Water Management, Elsevier, vol. 252(C).
    15. Liyuan Bo & Xiaomin Mao & Yali Wang, 2022. "Assessing the Applicability of Biodegradable Film Mulching in Northwest China Based on Comprehensive Benefits Study," Sustainability, MDPI, vol. 14(17), pages 1-23, August.
    16. Zhang, Binbin & Yan, Sihui & Li, Bin & Wu, Shufang & Feng, Hao & Gao, Xiaodong & Song, Xiaolin & Siddique, Kadambot H.M., 2023. "Combining organic and chemical fertilizer plus water-saving system reduces environmental impacts and improves apple yield in rainfed apple orchards," Agricultural Water Management, Elsevier, vol. 288(C).
    17. Liu, Hao & Li, Huanhuan & Ning, Huifeng & Zhang, Xiaoxian & Li, Shuang & Pang, Jie & Wang, Guangshuai & Sun, Jingsheng, 2019. "Optimizing irrigation frequency and amount to balance yield, fruit quality and water use efficiency of greenhouse tomato," Agricultural Water Management, Elsevier, vol. 226(C).
    18. Wang, Di & Wang, Li, 2017. "Dynamics of evapotranspiration partitioning for apple trees of different ages in a semiarid region of northwest China," Agricultural Water Management, Elsevier, vol. 191(C), pages 1-15.
    19. Cui, Ningbo & Zha, Yuxuan & Wang, Zhihui & Chen, Fei & Jiang, Shouzheng & Zhang, Wenjiang & Zhu, Bin & Wu, Zongjun & Zheng, Shunsheng & He, Ziling & Zhao, Lu, 2024. "Water deficit drip irrigation promotes citrus sugar accumulation during the late growth stages," Agricultural Water Management, Elsevier, vol. 296(C).
    20. Chen, Fei & Cui, Ningbo & Jiang, Shouzheng & Li, Hongping & Wang, Yaosheng & Gong, Daozhi & Hu, Xiaotao & Zhao, Lu & Liu, Chunwei & Qiu, Rangjian, 2022. "Effects of water deficit at different growth stages under drip irrigation on fruit quality of citrus in the humid areas of South China," Agricultural Water Management, Elsevier, vol. 262(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:248:y:2021:i:c:s0378377421000469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.