IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v260y2022ics0378377421005722.html
   My bibliography  Save this article

Effects of partial organic fertilizer replacement combined with rainwater collection system on soil water, nitrate-nitrogen and apple yield of rainfed apple orchard in the Loess Plateau of China: A 3-year field experiment

Author

Listed:
  • Zhang, Binbin
  • Su, Shunshun
  • Duan, Chenxiao
  • Feng, Hao
  • Chau, Henry Wai
  • He, Jianqiang
  • Li, Yi
  • Hill, Robert Lee
  • Wu, Shufang
  • Zou, Yufeng

Abstract

Soil drought, uneven distribution of precipitation, low precipitation use efficiency and excessive chemical fertilizer input are critical factors limiting sustainable agriculture of rainfed apple orchards in the Loess Plateau, China. For alleviating the effects of these factors and improving yield of rainfed apple orchards in this region, we proposed partial organic fertilizer replacement (substitution rate: 60% total nitrogen from organic fertilizer and 40% total nitrogen from chemical fertilizer) combined with rainwater collection (ORRC) system and conducted an in-situ field experiment for three years (2016–2018) with significant interannual precipitation variation to investigate the effects of ORRC system on soil water content (SWC), soil water storage (SWS), soil desiccation index (SDI), soil water storage deficit degree (SWSDD), nitrate-nitrogen, apple yield, crop water productivity (CWP) and precipitation use efficiency (PUE) in different rainfall years. Three management methods: (1) partial replacement of chemical fertilizer by organic fertilizer combined with rainwater collection measure (ORRC), (2) rainwater collection measure only (RC), and (3) conventional measure without any rainwater collection measure (CK). The results indicated that compared with CK treatment, ORRC treatment significantly (P < 0.05) increased SWC in 0–280 cm soil depth at spring and autumn by 26.91% and 32.19% in three years, respectively, alleviating heavy spring drought in rainfed apple orchards. Compared with RC and CK treatments, ORRC treatment had 37.89% and 52.49% lower soil water storage deficit degree (SWSDD) and 25.97% and 69.74% higher soil desiccation index of 0–280 cm depth, and improved nitrate-nitrogen content of 0–200 cm depth by 12.03 and 12.75 mg kg−1 in three years, respectively. ORRC and RC treatments improved apple yield by 47.40% and 11.43%, CWP by 55.45% and 19.66% and PUE by 46.50% and 11.69% over three years in comparison with CK treatment, respectively. In particular, ORRC treatment had the highest apple yield, CWP and PUE in each year. Overall, partial organic fertilizer replacement combined with rainwater collection measure holds promise for improving apple orchard production of rainfed apple orchards in northern Shaanxi of China.

Suggested Citation

  • Zhang, Binbin & Su, Shunshun & Duan, Chenxiao & Feng, Hao & Chau, Henry Wai & He, Jianqiang & Li, Yi & Hill, Robert Lee & Wu, Shufang & Zou, Yufeng, 2022. "Effects of partial organic fertilizer replacement combined with rainwater collection system on soil water, nitrate-nitrogen and apple yield of rainfed apple orchard in the Loess Plateau of China: A 3-," Agricultural Water Management, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:agiwat:v:260:y:2022:i:c:s0378377421005722
    DOI: 10.1016/j.agwat.2021.107295
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421005722
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107295?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meng, Wei & Sun, Xihuan & Ma, Juanjuan & Guo, Xianghong & Lei, Tao & Li, Ruofan, 2019. "Measurement and simulation of the water storage pit irrigation trees evapotranspiration in the Loess Plateau," Agricultural Water Management, Elsevier, vol. 226(C).
    2. Ding, Wenbin & Wang, Fei & Dong, Yunyun & Jin, Kai & Cong, Chenyu & Han, Jianqiao & Ge, Wenyan, 2021. "Effects of rainwater harvesting system on soil moisture in rain-fed orchards on the Chinese Loess Plateau," Agricultural Water Management, Elsevier, vol. 243(C).
    3. Zhang, Guangxin & Mo, Fei & Shah, Farooq & Meng, Wenhui & Liao, Yuncheng & Han, Juan, 2021. "Ridge-furrow configuration significantly improves soil water availability, crop water use efficiency, and grain yield in dryland agroecosystems of the Loess Plateau," Agricultural Water Management, Elsevier, vol. 245(C).
    4. Liao, Yang & Cao, Hong-Xia & Liu, Xing & Li, Huang-Tao & Hu, Qing-Yang & Xue, Wen-Kai, 2021. "By increasing infiltration and reducing evaporation, mulching can improve the soil water environment and apple yield of orchards in semiarid areas," Agricultural Water Management, Elsevier, vol. 253(C).
    5. Fang, Heng & Li, Yuannong & Gu, Xiaobo & Li, Yupeng & Chen, Pengpeng, 2021. "Can ridge-furrow with film and straw mulching improve wheat-maize system productivity and maintain soil fertility on the Loess Plateau of China?," Agricultural Water Management, Elsevier, vol. 246(C).
    6. Zhao, Zhiyuan & Zheng, Wei & Ma, Yanting & Wang, Xianling & Li, Ziyan & Zhai, Bingnian & Wang, Zhaohui, 2020. "Responses of soil water, nitrate and yield of apple orchard to integrated soil management in Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 240(C).
    7. Zhong, Yun & Fei, Liangjun & Li, Yibo & Zeng, Jian & Dai, Zhiguang, 2019. "Response of fruit yield, fruit quality, and water use efficiency to water deficits for apple trees under surge-root irrigation in the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 222(C), pages 221-230.
    8. Wang, Xiquan & Nie, Jiangwen & Wang, Peixin & Zhao, Jie & Yang, Yadong & Wang, Shang & Zeng, Zhaohai & Zang, Huadong, 2021. "Does the replacement of chemical fertilizer nitrogen by manure benefit water use efficiency of winter wheat – summer maize systems?," Agricultural Water Management, Elsevier, vol. 243(C).
    9. Gai, Xiapu & Liu, Hongbin & Liu, Jian & Zhai, Limei & Yang, Bo & Wu, Shuxia & Ren, Tianzhi & Lei, Qiuliang & Wang, Hongyuan, 2018. "Long-term benefits of combining chemical fertilizer and manure applications on crop yields and soil carbon and nitrogen stocks in North China Plain," Agricultural Water Management, Elsevier, vol. 208(C), pages 384-392.
    10. Song, Xiaolin & Wu, Pute & Gao, Xiaodong & Yao, Jie & Zou, Yufeng & Zhao, Xining & Siddique, Kadambot H.M. & Hu, Wei, 2020. "Rainwater collection and infiltration (RWCI) systems promote deep soil water and organic carbon restoration in water-limited sloping orchards," Agricultural Water Management, Elsevier, vol. 242(C).
    11. Zhang, Binbin & Hu, Yajin & Hill, Robert Lee & Wu, Shufang & Song, Xiaolin, 2021. "Combined effects of biomaterial amendments and rainwater harvesting on soil moisture, structure and apple roots in a rainfed apple orchard on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 248(C).
    12. Luo, Chong-Liang & Zhang, Xiao-Feng & Duan, Hai-Xia & Zhou, Rui & Mo, Fei & Mburu, David M. & Wang, Bao-Zhong & Wang, Wei & Kavagi, Levis & Xiong, You-Cai, 2021. "Responses of rainfed wheat productivity to varying ridge-furrow size and ratio in semiarid eastern African Plateau," Agricultural Water Management, Elsevier, vol. 249(C).
    13. Song, Xiaolin & Gao, Xiaodong & Zhao, Xining & Wu, Pute & Dyck, Miles, 2017. "Spatial distribution of soil moisture and fine roots in rain-fed apple orchards employing a Rainwater Collection and Infiltration (RWCI) system on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 184(C), pages 170-177.
    14. Zhang, Zhe & Zhang, Yanqing & Sun, Zhanxiang & Zheng, Jiaming & Liu, Enke & Feng, Liangshan & Feng, Chen & Si, Pengfei & Bai, Wei & Cai, Qian & Yang, Ning & van der Werf, Wopke & Zhang, Lizhen, 2019. "Plastic film cover during the fallow season preceding sowing increases yield and water use efficiency of rain-fed spring maize in a semi-arid climate," Agricultural Water Management, Elsevier, vol. 212(C), pages 203-210.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thongsouk Sompouviset & Yanting Ma & Eakkarin Sukkaew & Zhaoxia Zheng & Ai Zhang & Wei Zheng & Ziyan Li & Bingnian Zhai, 2023. "The Effects of Plastic Mulching Combined with Different Fertilizer Applications on Greenhouse Gas Emissions and Intensity, and Apple Yield in Northwestern China," Agriculture, MDPI, vol. 13(6), pages 1-23, June.
    2. He, Zijian & Hu, Qingyang & Zhang, Yi & Cao, Hongxia & Nan, Xueping, 2023. "Effects of irrigation and nitrogen management strategies on soil nitrogen and apple yields in loess plateau of China," Agricultural Water Management, Elsevier, vol. 280(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Binbin & Yan, Sihui & Li, Bin & Wu, Shufang & Feng, Hao & Gao, Xiaodong & Song, Xiaolin & Siddique, Kadambot H.M., 2023. "Combining organic and chemical fertilizer plus water-saving system reduces environmental impacts and improves apple yield in rainfed apple orchards," Agricultural Water Management, Elsevier, vol. 288(C).
    2. Zhang, Binbin & Hu, Yajin & Hill, Robert Lee & Wu, Shufang & Song, Xiaolin, 2021. "Combined effects of biomaterial amendments and rainwater harvesting on soil moisture, structure and apple roots in a rainfed apple orchard on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 248(C).
    3. Thongsouk Sompouviset & Yanting Ma & Eakkarin Sukkaew & Zhaoxia Zheng & Ai Zhang & Wei Zheng & Ziyan Li & Bingnian Zhai, 2023. "The Effects of Plastic Mulching Combined with Different Fertilizer Applications on Greenhouse Gas Emissions and Intensity, and Apple Yield in Northwestern China," Agriculture, MDPI, vol. 13(6), pages 1-23, June.
    4. Zhang, Xiaoyuan & Wang, Ke & Duan, Cuihua & Li, Gaoliang & Zhen, Qing & Zheng, Jiyong, 2023. "Evaporation effect of infiltration hole and its comparison with mulching," Agricultural Water Management, Elsevier, vol. 275(C).
    5. Duan, Chenxiao & Chen, Jifei & Li, Jiabei & Su, Shunshun & Lei, Qi & Feng, Hao & Wu, Shufang & Zhang, Tibin & Siddique, Kadambot H.M. & Zou, Yufeng, 2022. "Biomaterial amendments combined with ridge–furrow mulching improve soil hydrothermal characteristics and wolfberry (Lycium barbarum L.) growth in the Qaidam Basin of China," Agricultural Water Management, Elsevier, vol. 259(C).
    6. Zheng, Jing & Fan, Junliang & Zhou, Minghua & Zhang, Fucang & Liao, Zhenqi & Lai, Zhenlin & Yan, Shicheng & Guo, Jinjin & Li, Zhijun & Xiang, Youzhen, 2022. "Ridge-furrow plastic film mulching enhances grain yield and yield stability of rainfed maize by improving resources capture and use efficiency in a semi-humid drought-prone region," Agricultural Water Management, Elsevier, vol. 269(C).
    7. Zhang, Guangxin & Dai, Rongcheng & Ma, Wenzhuo & Fan, Hengzhi & Meng, Wenhui & Han, Juan & Liao, Yuncheng, 2022. "Optimizing the ridge–furrow ratio and nitrogen application rate can increase the grain yield and water use efficiency of rain-fed spring maize in the Loess Plateau region of China," Agricultural Water Management, Elsevier, vol. 262(C).
    8. Liao, Zhenqi & Zeng, Hualiang & Fan, Junliang & Lai, Zhenlin & Zhang, Chen & Zhang, Fucang & Wang, Haidong & Cheng, Minghui & Guo, Jinjin & Li, Zhijun & Wu, Peng, 2022. "Effects of plant density, nitrogen rate and supplemental irrigation on photosynthesis, root growth, seed yield and water-nitrogen use efficiency of soybean under ridge-furrow plastic mulching," Agricultural Water Management, Elsevier, vol. 268(C).
    9. Sun, Liquan & Zhang, Biao & Yin, Ziming & Guo, Huili & Siddique, Kadambot H.M. & Wu, Shufang & Yang, Jiangtao, 2022. "Assessing the performance of conservation measures for controlling slope runoff and erosion using field scouring experiments," Agricultural Water Management, Elsevier, vol. 259(C).
    10. Qiang, Shengcai & Zhang, Yan & Fan, Junliang & Zhang, Fucang & Sun, Min & Gao, Zhiqiang, 2022. "Combined effects of ridge–furrow ratio and urea type on grain yield and water productivity of rainfed winter wheat on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 261(C).
    11. Liu, Ziqi & Li, Kaiping & Xiong, Kangning & Li, Yuan & Wang, Jin & Sun, Jian & Cai, Lulu, 2021. "Effects of Zanthoxylum bungeanum planting on soil hydraulic properties and soil moisture in a karst area," Agricultural Water Management, Elsevier, vol. 257(C).
    12. Lijian Zheng & Juanjuan Ma & Xihuan Sun & Xianghong Guo, 2022. "Improving Leaf Photosynthetic Performance of Apple through a Novel Root-Zone Irrigation in the Loess Plateau," Agriculture, MDPI, vol. 12(9), pages 1-14, September.
    13. Liao, Zhenqi & Zhang, Chen & Yu, Shuolei & Lai, Zhenlin & Wang, Haidong & Zhang, Fucang & Li, Zhijun & Wu, Peng & Fan, Junliang, 2023. "Ridge-furrow planting with black film mulching increases rainfed summer maize production by improving resources utilization on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 289(C).
    14. Chen, Zhijun & Li, Yue & Zhang, Xuechen & Xiong, Yunwu & Huang, Quanzhong & Jin, Song & Sun, Shijun & Chi, Daocai & Huang, Guanhua, 2022. "Effects of lignite bioorganic product on sunflower growth, water and nitrogen productivity in saline-sodic farmlands at Northwest China," Agricultural Water Management, Elsevier, vol. 271(C).
    15. Di Wang, & Wang, Li, 2023. "Characteristics of soil evaporation at two stages of growth in apple orchards with different ages in a semi-humid region," Agricultural Water Management, Elsevier, vol. 280(C).
    16. Tadayon, Mohammad Saeed & Hosseini, Seyed Mashaallah, 2022. "Shade net and mulching measures for improving soil and plant water status of fig trees under rainfed conditions," Agricultural Water Management, Elsevier, vol. 271(C).
    17. Yang, Yi & Li, Bingbing & Shi, Peijun & Li, Zhi, 2023. "Assessing spatiotemporally varied ecohydrological effects of apple orchards based on regional-scale estimation of tree distribution and ages," Agricultural Water Management, Elsevier, vol. 287(C).
    18. Liao, Yang & Cao, Hong-Xia & Liu, Xing & Li, Huang-Tao & Hu, Qing-Yang & Xue, Wen-Kai, 2021. "By increasing infiltration and reducing evaporation, mulching can improve the soil water environment and apple yield of orchards in semiarid areas," Agricultural Water Management, Elsevier, vol. 253(C).
    19. Guo, Fu-Xing & Wang, Yan-Ping & Hou, Ting-Ting & Zhang, Lin-Sen & Mu, Yan & Wu, Fu-yong, 2021. "Variation of soil moisture and fine roots distribution adopts rainwater collection, infiltration promoting and soil anti-seepage system (RCIP-SA) in hilly apple orchard on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 244(C).
    20. He, Zijian & Hu, Qingyang & Zhang, Yi & Cao, Hongxia & Nan, Xueping, 2023. "Effects of irrigation and nitrogen management strategies on soil nitrogen and apple yields in loess plateau of China," Agricultural Water Management, Elsevier, vol. 280(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:260:y:2022:i:c:s0378377421005722. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.