IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v240y2020ics0378377420300548.html
   My bibliography  Save this article

Responses of soil water, nitrate and yield of apple orchard to integrated soil management in Loess Plateau, China

Author

Listed:
  • Zhao, Zhiyuan
  • Zheng, Wei
  • Ma, Yanting
  • Wang, Xianling
  • Li, Ziyan
  • Zhai, Bingnian
  • Wang, Zhaohui

Abstract

The managements of fertilization and surface mulching in apple orchards have both potential positive environmental and productive effects due to their benefits of water infiltration and soil nitrate movement in field ecosystem. However, the research to date had tended to focus on single measure rather than both together. The aims of this study were to determine how integrated management for apple orchards influenced spatial and temporal changes of soil water content (SWC) and soil water storage (SWS), illustrate the effects on reducing soil nitrate accumulation (SNA) and promoting N uptake, determine the impacts of water use efficiency (WUE) and apple yield. We applied three treatments for demonstration contrast experiments, traditional farming measure (chemical fertilizer, FM), existing management measure (chemical fertilizer plus manure, plastic film mulch in-row, EM) and optimized management measure (chemical fertilizer plus manure, plastic film mulch in-row and cover crop inter-row, OM). We found that the SWC in 3 m soil layers was influenced by the tree growth period, the clearly benefits of OM to invariably increase SWS in 3 m soil layer were observed in different period, especially in dry year. During the tree growth, the OM treatment significantly increased rainwater retention in deep soil (below 1 m) and received a maximum value of SWS in 3 m soil layers. Apple yield was significantly enhanced in OM, but the water consumption in each treatment had no obvious difference, and consequently WUE was elevated compared with EM and FM. The SNA after the apple harvest was significantly decreased under the OM, especially in 2−3 m soil depth. Meanwhile, total N in fruits and leaves in OM were significant higher than FM, indicating that the risk of N leaching was reduced, and the N was effectively used by trees. Regression relationships between SNA and SWS were significantly negative in the dry year, means that the OM would perform better in mitigating soil desiccation and soil nitrate leaching in dry climatic condition. This study highlights integrated soil management is a considerable practice for apple orchards in Loess Plateau and the rain-fed area around the world.

Suggested Citation

  • Zhao, Zhiyuan & Zheng, Wei & Ma, Yanting & Wang, Xianling & Li, Ziyan & Zhai, Bingnian & Wang, Zhaohui, 2020. "Responses of soil water, nitrate and yield of apple orchard to integrated soil management in Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 240(C).
  • Handle: RePEc:eee:agiwat:v:240:y:2020:i:c:s0378377420300548
    DOI: 10.1016/j.agwat.2020.106325
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377420300548
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106325?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Chang-An & Li, Feng-Rui & Zhou, Li-Min & Zhang, Rong-He & Yu-Jia, & Lin, Shi-Ling & Wang, Li-Jun & Siddique, Kadambot H.M. & Li, Feng-Min, 2013. "Effect of organic manure and fertilizer on soil water and crop yields in newly-built terraces with loess soils in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 117(C), pages 123-132.
    2. Brodhagen, Marion & Goldberger, Jessica R. & Hayes, Douglas G. & Inglis, Debra Ann & Marsh, Thomas L. & Miles, Carol, 2017. "Policy considerations for limiting unintended residual plastic in agricultural soils," Environmental Science & Policy, Elsevier, vol. 69(C), pages 81-84.
    3. Haixia Wu & Yan Ge, 2019. "Excessive Application of Fertilizer, Agricultural Non-Point Source Pollution, and Farmers’ Policy Choice," Sustainability, MDPI, vol. 11(4), pages 1-17, February.
    4. Yang, Wei & Feng, Gary & Adeli, Ardeshir & Kersebaum, K.C. & Jenkins, Johnie N. & Li, Pinfang, 2019. "Long-term effect of cover crop on rainwater balance components and use efficiency in the no-tilled and rainfed corn and soybean rotation system," Agricultural Water Management, Elsevier, vol. 219(C), pages 27-39.
    5. Pan, Daili & Song, Yaqian & Dyck, Miles & Gao, Xiaodong & Wu, Pute & Zhao, Xining, 2017. "Effect of plant cover type on soil water budget and tree photosynthesis in jujube orchards," Agricultural Water Management, Elsevier, vol. 184(C), pages 135-144.
    6. Zhong, Yun & Fei, Liangjun & Li, Yibo & Zeng, Jian & Dai, Zhiguang, 2019. "Response of fruit yield, fruit quality, and water use efficiency to water deficits for apple trees under surge-root irrigation in the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 222(C), pages 221-230.
    7. Salado-Navarro, Luis R. & Sinclair, Thomas R., 2009. "Crop rotations in Argentina: Analysis of water balance and yield using crop models," Agricultural Systems, Elsevier, vol. 102(1-3), pages 11-16, October.
    8. Liu, Wenzhao & Zhang, X.-C. & Dang, Tinghui & Ouyang, Zhu & Li, Zhi & Wang, Jun & Wang, Rui & Gao, Changqing, 2010. "Soil water dynamics and deep soil recharge in a record wet year in the southern Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 97(8), pages 1133-1138, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thongsouk Sompouviset & Yanting Ma & Eakkarin Sukkaew & Zhaoxia Zheng & Ai Zhang & Wei Zheng & Ziyan Li & Bingnian Zhai, 2023. "The Effects of Plastic Mulching Combined with Different Fertilizer Applications on Greenhouse Gas Emissions and Intensity, and Apple Yield in Northwestern China," Agriculture, MDPI, vol. 13(6), pages 1-23, June.
    2. He, Zijian & Hu, Qingyang & Zhang, Yi & Cao, Hongxia & Nan, Xueping, 2023. "Effects of irrigation and nitrogen management strategies on soil nitrogen and apple yields in loess plateau of China," Agricultural Water Management, Elsevier, vol. 280(C).
    3. Zhu, Jie & Chen, Shanghong & Zhang, Qingwen & Mei, Xurong, 2023. "Multi-year vertical and life cycle impacts of C-N management on soil moisture regimes," Agricultural Water Management, Elsevier, vol. 290(C).
    4. Di Wang, & Wang, Li, 2023. "Characteristics of soil evaporation at two stages of growth in apple orchards with different ages in a semi-humid region," Agricultural Water Management, Elsevier, vol. 280(C).
    5. Zhang, Binbin & Su, Shunshun & Duan, Chenxiao & Feng, Hao & Chau, Henry Wai & He, Jianqiang & Li, Yi & Hill, Robert Lee & Wu, Shufang & Zou, Yufeng, 2022. "Effects of partial organic fertilizer replacement combined with rainwater collection system on soil water, nitrate-nitrogen and apple yield of rainfed apple orchard in the Loess Plateau of China: A 3-," Agricultural Water Management, Elsevier, vol. 260(C).
    6. Li, Jie & Yang, Qiliang & Shi, Zhengtao & Zang, Zhennan & Liu, Xiaogang, 2021. "Effects of deficit irrigation and organic fertilizer on yield, saponin and disease incidence in Panax notoginseng under shaded conditions," Agricultural Water Management, Elsevier, vol. 256(C).
    7. Zhang, Binbin & Yan, Sihui & Li, Bin & Wu, Shufang & Feng, Hao & Gao, Xiaodong & Song, Xiaolin & Siddique, Kadambot H.M., 2023. "Combining organic and chemical fertilizer plus water-saving system reduces environmental impacts and improves apple yield in rainfed apple orchards," Agricultural Water Management, Elsevier, vol. 288(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Linlin & Li, Qiang & Coulter, Jeffrey A. & Xie, Junhong & Luo, Zhuzhu & Zhang, Renzhi & Deng, Xiping & Li, Linglin, 2020. "Winter wheat yield and water use efficiency response to organic fertilization in northern China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 229(C).
    2. Mohamed Allam & Emanuele Radicetti & Valentina Quintarelli & Verdiana Petroselli & Sara Marinari & Roberto Mancinelli, 2022. "Influence of Organic and Mineral Fertilizers on Soil Organic Carbon and Crop Productivity under Different Tillage Systems: A Meta-Analysis," Agriculture, MDPI, vol. 12(4), pages 1-19, March.
    3. Julia Tomei & Stella Semino & Helena Paul & Lilian Joensen & Mario Monti & Erling Jelsøe, 2010. "Soy production and certification: the case of Argentinean soy-based biodiesel," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(4), pages 371-394, April.
    4. Wang, Shulan & Wang, Hao & Zhang, Yuanhong & Wang, Rui & Zhang, Yujiao & Xu, Zonggui & Jia, Guangcan & Wang, Xiaoli & Li, Jun, 2018. "The influence of rotational tillage on soil water storage, water use efficiency and maize yield in semi-arid areas under varied rainfall conditions," Agricultural Water Management, Elsevier, vol. 203(C), pages 376-384.
    5. Gołębiewska, Barbara & Grontkowska, Anna & Gębska, Monika, 2020. "Education As The Differentiating Factor In Applying Sustainable Development Principles On Farms," Roczniki (Annals), Polish Association of Agricultural Economists and Agribusiness - Stowarzyszenie Ekonomistow Rolnictwa e Agrobiznesu (SERiA), vol. 2020(3).
    6. Qiuwei Bai & Hongpin Luo & Xinglan Fu & Xin Zhang & Guanglin Li, 2023. "Design and Experiment of Lightweight Dual-Mode Automatic Variable-Rate Fertilization Device and Control System," Agriculture, MDPI, vol. 13(6), pages 1-20, May.
    7. Lian-Jie Wan & Yang Tian & Man He & Yong-Qiang Zheng & Qiang Lyu & Rang-Jin Xie & Yan-Yan Ma & Lie Deng & Shi-Lai Yi, 2021. "Effects of Chemical Fertilizer Combined with Organic Fertilizer Application on Soil Properties, Citrus Growth Physiology, and Yield," Agriculture, MDPI, vol. 11(12), pages 1-15, November.
    8. Ágota Horel & Tibor Zsigmond & Csilla Farkas & Györgyi Gelybó & Eszter Tóth & Anikó Kern & Zsófia Bakacsi, 2022. "Climate Change Alters Soil Water Dynamics under Different Land Use Types," Sustainability, MDPI, vol. 14(7), pages 1-17, March.
    9. Shengnan Huang & Ehsan Elahi, 2022. "Farmers’ Preferences for Recycling Pesticide Packaging Waste: An Implication of a Discrete Choice Experiment Method," Sustainability, MDPI, vol. 14(21), pages 1-13, October.
    10. Liu, Zihan & Cai, Lu & Dong, Qinge & Zhao, Xiaoli & Han, Jianqiao, 2022. "Effects of microplastics on water infiltration in agricultural soil on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 271(C).
    11. Yang, Zhiyuan & Zhu, Yuemei & Zhang, Xiaoli & Liao, Qin & Fu, Hao & Cheng, Qingyue & Chen, Zongkui & Sun, Yongjian & Ma, Jun & Zhang, Jinyue & Li, Liangyu & Li, Na, 2023. "Unmanned aerial vehicle direct seeding or integrated mechanical transplanting, which will be the next step for mechanized rice production in China? —A comparison based on energy use efficiency and eco," Energy, Elsevier, vol. 273(C).
    12. Wang, Xiaolin & Ren, Yuanyuan & Zhang, Suiqi & Chen, Yinglong & Wang, Nan, 2017. "Applications of organic manure increased maize (Zea mays L.) yield and water productivity in a semi-arid region," Agricultural Water Management, Elsevier, vol. 187(C), pages 88-98.
    13. Ji Chen & Xiao Chen & Jin Guo & Runyun Zhu & Mengran Liu & Xixi Kuang & Wenqing He & Yao Lu, 2021. "Agricultural, Ecological, and Social Insights: Residual Mulch Film Management Capacity and Policy Recommendations Based on Evidence in Yunnan Province, China," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    14. Ning Wang & Yingying Xing & Xiukang Wang, 2019. "Exploring Options for Improving Potato Productivity through Reducing Crop Yield Gap in Loess Plateau of China Based on Grey Correlation Analysis," Sustainability, MDPI, vol. 11(20), pages 1-14, October.
    15. Li, Yizhuo & Tian, Di & Feng, Gary & Yang, Wei & Feng, Liping, 2021. "Climate change and cover crop effects on water use efficiency of a corn-soybean rotation system," Agricultural Water Management, Elsevier, vol. 255(C).
    16. Li, Huijie & Ma, Xiaojun & Lu, Yanwei & Ren, Ruiqi & Cui, Buli & Si, Bingcheng, 2021. "Growing deep roots has opposing impacts on the transpiration of apple trees planted in subhumid loess region," Agricultural Water Management, Elsevier, vol. 258(C).
    17. Wang, Jun & Ghimire, Rajan & Fu, Xin & Sainju, Upendra M. & Liu, Wenzhao, 2018. "Straw mulching increases precipitation storage rather than water use efficiency and dryland winter wheat yield," Agricultural Water Management, Elsevier, vol. 206(C), pages 95-101.
    18. Choumert, Johanna & Phélinas, Pascale, 2015. "Determinants of agricultural land values in Argentina," Ecological Economics, Elsevier, vol. 110(C), pages 134-140.
    19. Jessica R. Goldberger, 2018. "2018 AFHVS presidential address," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 35(4), pages 899-904, December.
    20. Jianhua Ren & Hongzhen Lei & Haiyun Ren, 2022. "Livelihood Capital, Ecological Cognition, and Farmers’ Green Production Behavior," Sustainability, MDPI, vol. 14(24), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:240:y:2020:i:c:s0378377420300548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.