IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v246y2021ics037837742032254x.html
   My bibliography  Save this article

Understanding the relationship between biomass production and water use of Populus tomentosa trees throughout an entire short-rotation

Author

Listed:
  • Li, Doudou
  • Liu, Jinqiang
  • Verhoef, Anne
  • Xi, Benye
  • Hernandez-Santana, Virginia

Abstract

Understanding the relationship between tree production and water use, as well as the main environmental and plant-related drivers of water use, is crucial for the development of production prediction models and reliable water management strategies under different climatic conditions. However, the relation between tree water use and biomass production has never been assessed throughout the entire rotation for poplar trees. Meanwhile, it remains poorly understood how the transpiration driving factors of poplars will change with stand age. Therefore, we investigated the relationship between transpiration (E) and aboveground biomass (ABM), as well as the main drivers of E for 2- to 5-year-old (2016–2019) Populus tomentosa trees under three water treatments. The annual increase in ABM depended on annually accumulated E and their relationship could be fitted with a logistic curve in each growing season (R2 > 0.89). Throughout the whole rotation period, compared with the non-irrigated trees, full irrigation trees produced 59% more biomass with only 12% more E, while deficit irrigation trees attained 46% more biomass with 32% more E. The daily E had a strong exponential relationship with vapor pressure deficit (D) during years 3–5 of the rotation, and the asymptote of this relationship increased with tree age (1.6 kPa (2017), 2 kPa (2018), 2.5 kPa (2019)). The E was also strongly linearly correlated to solar radiation (Rs) for each year although with slightly weaker relationships than for D. Similar to other poplar species, P. tomentosa showed effective stomatal control on E. However, soil water content had almost no effect on E for all treatments, no matter which soil layer was considered. D and Rs were the major drivers of P. tomentosa transpiration during the growing season, even during drought periods, in the study region. Our findings will not only help to deepen the understanding of poplar water use characteristics and the underlying mechanisms, but also help to develop models for predicting the biomass production.

Suggested Citation

  • Li, Doudou & Liu, Jinqiang & Verhoef, Anne & Xi, Benye & Hernandez-Santana, Virginia, 2021. "Understanding the relationship between biomass production and water use of Populus tomentosa trees throughout an entire short-rotation," Agricultural Water Management, Elsevier, vol. 246(C).
  • Handle: RePEc:eee:agiwat:v:246:y:2021:i:c:s037837742032254x
    DOI: 10.1016/j.agwat.2020.106710
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837742032254X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106710?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Doudou & Fernández, José Enrique & Li, Xin & Xi, Benye & Jia, Liming & Hernandez-Santana, Virginia, 2020. "Tree growth patterns and diagnosis of water status based on trunk diameter fluctuations in fast-growing Populus tomentosa plantations," Agricultural Water Management, Elsevier, vol. 241(C).
    2. Suchul Kang & Elfatih A. B. Eltahir, 2018. "North China Plain threatened by deadly heatwaves due to climate change and irrigation," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    3. Xi, Benye & Bloomberg, Mark & Watt, Michael S. & Wang, Ye & Jia, Liming, 2016. "Modeling growth response to soil water availability simulated by HYDRUS for a mature triploid Populus tomentosa plantation located on the North China Plain," Agricultural Water Management, Elsevier, vol. 176(C), pages 243-254.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giulio Sperandio & Mauro Pagano & Andrea Acampora & Vincenzo Civitarese & Carla Cedrola & Paolo Mattei & Roberto Tomasone, 2022. "Deficit Irrigation for Efficiency and Water Saving in Poplar Plantations," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
    2. Li, Doudou & Li, Ximeng & Xi, Benye & Hernandez-Santana, Virginia, 2022. "Evaluation of method to model stomatal conductance and its use to assess biomass increase in poplar trees," Agricultural Water Management, Elsevier, vol. 259(C).
    3. Jiao, Maqian & Yang, Wenhan & Hu, Wei & Clothier, Brent & Zou, Songyan & Li, Doudou & Di, Nan & Liu, Jinqiang & Liu, Yang & Duan, Jie & Xi, Benye, 2021. "The optimal tensiometer installation position for scheduling border irrigation in Populus tomentosa plantations," Agricultural Water Management, Elsevier, vol. 253(C).
    4. Guo, Youzheng & Ma, Yingjun & Ding, Changjun & Di, Nan & Liu, Yang & Tan, Jianbiao & Zhang, Shusen & Yu, Weichen & Gao, Guixi & Duan, Jie & Xi, Benye & Li, Ximeng, 2023. "Plant hydraulics provide guidance for irrigation management in mature polar plantation," Agricultural Water Management, Elsevier, vol. 275(C).
    5. Di, Nan & Yang, Shangjin & Liu, Yang & Fan, Yunxiang & Duan, Jie & Nadezhdina, Nadezhda & Li, Ximeng & Xi, Benye, 2022. "Soil-moisture-dependent nocturnal water use strategy and its responses to meteorological factors in a seasonal-arid poplar plantation," Agricultural Water Management, Elsevier, vol. 274(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Doudou & Li, Ximeng & Xi, Benye & Hernandez-Santana, Virginia, 2022. "Evaluation of method to model stomatal conductance and its use to assess biomass increase in poplar trees," Agricultural Water Management, Elsevier, vol. 259(C).
    2. Guo, Youzheng & Ma, Yingjun & Ding, Changjun & Di, Nan & Liu, Yang & Tan, Jianbiao & Zhang, Shusen & Yu, Weichen & Gao, Guixi & Duan, Jie & Xi, Benye & Li, Ximeng, 2023. "Plant hydraulics provide guidance for irrigation management in mature polar plantation," Agricultural Water Management, Elsevier, vol. 275(C).
    3. Giulio Sperandio & Mauro Pagano & Andrea Acampora & Vincenzo Civitarese & Carla Cedrola & Paolo Mattei & Roberto Tomasone, 2022. "Deficit Irrigation for Efficiency and Water Saving in Poplar Plantations," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
    4. Liu, Yansui & Zhou, Yang, 2021. "Reflections on China's food security and land use policy under rapid urbanization," Land Use Policy, Elsevier, vol. 109(C).
    5. Nicholas Stern & Joseph Stiglitz & Charlotte Taylor, 2022. "The economics of immense risk, urgent action and radical change: towards new approaches to the economics of climate change," Journal of Economic Methodology, Taylor & Francis Journals, vol. 29(3), pages 181-216, July.
    6. He, Qinsi & Li, Sien & Kang, Shaozhong & Yang, Hanbo & Qin, Shujing, 2018. "Simulation of water balance in a maize field under film-mulching drip irrigation," Agricultural Water Management, Elsevier, vol. 210(C), pages 252-260.
    7. Feiyu Wang & Keqin Duan & Lei Zou, 2019. "Urbanization Effects on Human-Perceived Temperature Changes in the North China Plain," Sustainability, MDPI, vol. 11(12), pages 1-15, June.
    8. Jinxiu Liu & Weihao Shen & Yaqian He, 2021. "Effects of Cropland Expansion on Temperature Extremes in Western India from 1982 to 2015," Land, MDPI, vol. 10(5), pages 1-17, May.
    9. Zhou, Hong & Zhao, Wen zhi, 2019. "Modeling soil water balance and irrigation strategies in a flood-irrigated wheat-maize rotation system. A case in dry climate, China," Agricultural Water Management, Elsevier, vol. 221(C), pages 286-302.
    10. Zhang, Qi & Yu, Xin & Qiu, Rangjian & Liu, Zhongxian & Yang, Zaiqiang, 2022. "Evolution, severity, and spatial extent of compound drought and heat events in north China based on copula model," Agricultural Water Management, Elsevier, vol. 273(C).
    11. Yan, Zongzheng & Zhang, Xiying & Rashid, Muhammad Adil & Li, Hongjun & Jing, Haichun & Hochman, Zvi, 2020. "Assessment of the sustainability of different cropping systems under three irrigation strategies in the North China Plain under climate change," Agricultural Systems, Elsevier, vol. 178(C).
    12. Di, Nan & Yang, Shangjin & Liu, Yang & Fan, Yunxiang & Duan, Jie & Nadezhdina, Nadezhda & Li, Ximeng & Xi, Benye, 2022. "Soil-moisture-dependent nocturnal water use strategy and its responses to meteorological factors in a seasonal-arid poplar plantation," Agricultural Water Management, Elsevier, vol. 274(C).
    13. Li, Xue & Smyth, Russell & Yao, Yao, 2023. "Extreme temperatures and out-of-pocket medical expenditure: Evidence from China," China Economic Review, Elsevier, vol. 77(C).
    14. Stern, Nicholas, 2021. "A time for action on climate change and a time for change in economics," LSE Research Online Documents on Economics 112802, London School of Economics and Political Science, LSE Library.
    15. Zhang, Yuwen & Ding, Changjun & Liu, Yan & Li, Shan & Li, Ximeng & Xi, Benye & Duan, Jie, 2023. "Xylem anatomical and hydraulic traits vary within crown but not respond to water and nitrogen addition in Populus tomentosa," Agricultural Water Management, Elsevier, vol. 278(C).
    16. He, Yuelin & Xi, Benye & Li, Guangde & Wang, Ye & Jia, Liming & Zhao, Dehai, 2021. "Influence of drip irrigation, nitrogen fertigation, and precipitation on soil water and nitrogen distribution, tree seasonal growth and nitrogen uptake in young triploid poplar (Populus tomentosa) pla," Agricultural Water Management, Elsevier, vol. 243(C).
    17. Marie-Noëlle Woillez & Gaël Giraud & Antoine Godin, 2020. "Economic impacts of a glacial period: a thought experiment to assess the disconnect between econometrics and climate sciences," Post-Print hal-03102681, HAL.
    18. Wang, Jian & Tian, Zuokun & Yang, Ting & Li, Xuechun & He, Qiu & Wang, Duo & Chen, Rui, 2024. "Characteristics of limited flow and soil water infiltration boundary of a subsurface drip irrigation emitter in silty loam soil," Agricultural Water Management, Elsevier, vol. 291(C).
    19. Yixu Wang & Mingxue Xu & Jun Li & Nan Jiang & Dongchuan Wang & Lei Yao & Ying Xu, 2020. "The Gradient Effect on the Relationship between the Underlying Factor and Land Surface Temperature in Large Urbanized Region," Land, MDPI, vol. 10(1), pages 1-16, December.
    20. Zhao, Jincai & Ji, Guangxing & Yue, YanLin & Lai, Zhizhu & Chen, Yulong & Yang, Dongyang & Yang, Xu & Wang, Zheng, 2019. "Spatio-temporal dynamics of urban residential CO2 emissions and their driving forces in China using the integrated two nighttime light datasets," Applied Energy, Elsevier, vol. 235(C), pages 612-624.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:246:y:2021:i:c:s037837742032254x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.