IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v274y2022ics0378377422005315.html
   My bibliography  Save this article

Soil-moisture-dependent nocturnal water use strategy and its responses to meteorological factors in a seasonal-arid poplar plantation

Author

Listed:
  • Di, Nan
  • Yang, Shangjin
  • Liu, Yang
  • Fan, Yunxiang
  • Duan, Jie
  • Nadezhdina, Nadezhda
  • Li, Ximeng
  • Xi, Benye

Abstract

Nocturnal water uses (Qn) significantly affect global water budgets and diurnal water cycles, which are currently suffering from restrictions of soil drought and soil water depletion caused by climate change and worldwide greening. Recent studies have recognized the vital influence of soil water availability on Qn, but responses of nocturnal water use strategy to soil moisture variation were not fully understood. For example, the effect of soil water content (θ) on the trade-offs between two components of Qn, stem water refilling (Re) and nocturnal transpiration (Tn), was rarely involved and remained unclear. This study analyzed the nocturnal sap flow of typical afforestation species, poplar plantation, under different soil water conditions in a seasonal arid region of northern China. Results indicated that higher θ significantly promoted Qn through enhancing the stomatal conductance but had less influence on the proportion of nocturnal water use to daily water use (Qn%) (7 %∼10 %). With the decline of soil water conditions, significant linear correlations between Qn and θ shifted from deep soil layers to the soil surface. The influence of meteorological factors on Qn depended on soil water condition, and the explanation of nocturnal vapor pressure deficit (VPDn) to Qn became weaker with increasing soil moisture. Negative linear relations between the proportion of stem water refilling to Qn (Re%) and θ were shown within treatments, but a significantly higher Re% was observed under more sufficient soil water. These opposite responses of Re% to θ reflected the different adaptions of Qn to soil water availability on short- and long-scales. This study highlights the crucial role of soil moisture in the nocturnal water use and balance strategy of a seasonal-arid poplar plantation. Our results help better understand the nocturnal transpiration processes in the context of global climate change.

Suggested Citation

  • Di, Nan & Yang, Shangjin & Liu, Yang & Fan, Yunxiang & Duan, Jie & Nadezhdina, Nadezhda & Li, Ximeng & Xi, Benye, 2022. "Soil-moisture-dependent nocturnal water use strategy and its responses to meteorological factors in a seasonal-arid poplar plantation," Agricultural Water Management, Elsevier, vol. 274(C).
  • Handle: RePEc:eee:agiwat:v:274:y:2022:i:c:s0378377422005315
    DOI: 10.1016/j.agwat.2022.107984
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422005315
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107984?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiao-Peng Song & Matthew C. Hansen & Stephen V. Stehman & Peter V. Potapov & Alexandra Tyukavina & Eric F. Vermote & John R. Townshend, 2018. "Author Correction: Global land change from 1982 to 2016," Nature, Nature, vol. 563(7732), pages 26-26, November.
    2. Montoro, Amelia & Torija, Irene & Mañas, Fernando & López-Urrea, Ramón, 2020. "Lysimeter measurements of nocturnal and diurnal grapevine transpiration: Effect of soil water content, and phenology," Agricultural Water Management, Elsevier, vol. 229(C).
    3. Xi, Benye & Bloomberg, Mark & Watt, Michael S. & Wang, Ye & Jia, Liming, 2016. "Modeling growth response to soil water availability simulated by HYDRUS for a mature triploid Populus tomentosa plantation located on the North China Plain," Agricultural Water Management, Elsevier, vol. 176(C), pages 243-254.
    4. Li, Doudou & Liu, Jinqiang & Verhoef, Anne & Xi, Benye & Hernandez-Santana, Virginia, 2021. "Understanding the relationship between biomass production and water use of Populus tomentosa trees throughout an entire short-rotation," Agricultural Water Management, Elsevier, vol. 246(C).
    5. Xiao-Peng Song & Matthew C. Hansen & Stephen V. Stehman & Peter V. Potapov & Alexandra Tyukavina & Eric F. Vermote & John R. Townshend, 2018. "Global land change from 1982 to 2016," Nature, Nature, vol. 560(7720), pages 639-643, August.
    6. Chi Chen & Taejin Park & Xuhui Wang & Shilong Piao & Baodong Xu & Rajiv K. Chaturvedi & Richard Fuchs & Victor Brovkin & Philippe Ciais & Rasmus Fensholt & Hans Tømmervik & Govindasamy Bala & Zaichun , 2019. "China and India lead in greening of the world through land-use management," Nature Sustainability, Nature, vol. 2(2), pages 122-129, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yaqian He & Jieun Oh & Eungul Lee & Yaeone Kim, 2022. "Land Cover and Land Use Mapping of the East Asian Summer Monsoon Region from 1982 to 2015," Land, MDPI, vol. 11(3), pages 1-21, March.
    2. Zhou, Yang & Zhong, Zhen & Cheng, Guoqiang, 2023. "Cultivated land loss and construction land expansion in China: Evidence from national land surveys in 1996, 2009 and 2019," Land Use Policy, Elsevier, vol. 125(C).
    3. Wu, Bingfang & Fu, Zhijun & Fu, Bojie & Yan, Changzhen & Zeng, Hongwei & Zhao, Wenwu, 2024. "Dynamics of land cover changes and driving forces in China’s drylands since the 1970 s," Land Use Policy, Elsevier, vol. 140(C).
    4. Srijana Shrestha & Khem Narayan Poudyal & Nawraj Bhattarai & Mohan B. Dangi & John J. Boland, 2022. "An Assessment of the Impact of Land Use and Land Cover Change on the Degradation of Ecosystem Service Values in Kathmandu Valley Using Remote Sensing and GIS," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    5. Weijia Chen & Yongquan Lu & Guilin Liu, 2022. "Balancing cropland gain and desert vegetation loss: The key to rural revitalization in Xinjiang, China," Growth and Change, Wiley Blackwell, vol. 53(3), pages 1122-1145, September.
    6. Baoni Li & Lihua Xiong & Quan Zhang & Shilei Chen & Han Yang & Shuhui Guo, 2022. "Effects of land use/cover change on atmospheric humidity in three urban agglomerations in the Yangtze River Economic Belt, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 577-613, August.
    7. Wei Fan & Xiankun Yang & Shirong Cai & Haidong Ou & Tao Zhou & Dakang Wang, 2024. "Land-Use/Cover Change and Driving Forces in the Pan-Pearl River Basin during the Period 1985–2020," Land, MDPI, vol. 13(6), pages 1-26, June.
    8. Giulio Sperandio & Mauro Pagano & Andrea Acampora & Vincenzo Civitarese & Carla Cedrola & Paolo Mattei & Roberto Tomasone, 2022. "Deficit Irrigation for Efficiency and Water Saving in Poplar Plantations," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
    9. Tatiana Montenegro-Romero & Cristián Vergara-Fernández & Fabian Argandoña-Castro & Fernando Peña-Cortés, 2022. "Agriculture and Temperate Fruit Crop Dynamics in South-Central Chile: Challenges for Fruit Crop Production in La Araucanía Region, Chile," Land, MDPI, vol. 11(6), pages 1-12, May.
    10. Michel Opelele Omeno & Ying Yu & Wenyi Fan & Tolerant Lubalega & Chen Chen & Claude Kachaka Sudi Kaiko, 2021. "Analysis of the Impact of Land-Use/Land-Cover Change on Land-Surface Temperature in the Villages within the Luki Biosphere Reserve," Sustainability, MDPI, vol. 13(20), pages 1-23, October.
    11. Min Wang & Kongtao Qin & Yanhong Jia & Xiaohan Yuan & Shuqi Yang, 2022. "Land Use Transition and Eco-Environmental Effects in Karst Mountain Area Based on Production-Living-Ecological Space: A Case Study of Longlin Multinational Autonomous County, Southwest China," IJERPH, MDPI, vol. 19(13), pages 1-23, June.
    12. Xiaotong Wang & Jiazheng Han & Jian Lin, 2022. "Response of Land Use and Net Primary Productivity to Coal Mining: A Case Study of Huainan City and Its Mining Areas," Land, MDPI, vol. 11(7), pages 1-16, June.
    13. Chen Ma & Runze Nie & Guoming Du, 2023. "Responses of Soil Collembolans to Land Degradation in a Black Soil Region in China," IJERPH, MDPI, vol. 20(6), pages 1-13, March.
    14. Chasia, Stanley & Olang, Luke O. & Sitoki, Lewis, 2023. "Modelling of land-use/cover change trajectories in a transboundary catchment of the Sio-Malaba-Malakisi Region in East Africa using the CLUE-s model," Ecological Modelling, Elsevier, vol. 476(C).
    15. Nguyen Van Hiep & Nguyen Thi Thanh Thao & Luong Van Viet & Huynh Cong Luc & Le Huy Ba, 2023. "Affecting of Nature and Human Activities on the Trend of Vegetation Health Indices in Dak Nong Province, Vietnam," Sustainability, MDPI, vol. 15(7), pages 1-21, March.
    16. Zhihua Liu & John S. Kimball & Ashley P. Ballantyne & Nicholas C. Parazoo & Wen J. Wang & Ana Bastos & Nima Madani & Susan M. Natali & Jennifer D. Watts & Brendan M. Rogers & Philippe Ciais & Kailiang, 2022. "Respiratory loss during late-growing season determines the net carbon dioxide sink in northern permafrost regions," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    17. Xiaoyu Niu & Yunfeng Hu & Zhongying Lei & Huimin Yan & Junzhi Ye & Hao Wang, 2022. "Temporal and Spatial Evolution Characteristics and Its Driving Mechanism of Land Use/Cover in Vietnam from 2000 to 2020," Land, MDPI, vol. 11(6), pages 1-19, June.
    18. Zhangxuan Qin & Xiaolin Liu & Xiaoyan Lu & Mengfei Li & Fei Li, 2022. "Grain Production Space Reconstruction and Its Influencing Factors in the Loess Plateau," IJERPH, MDPI, vol. 19(10), pages 1-18, May.
    19. Yuji Hara & Chizuko Hirai & Yuki Sampei, 2022. "Mapping Uncounted Anthropogenic Fill Flows: Environmental Impact and Mitigation," Land, MDPI, vol. 11(11), pages 1-19, November.
    20. Liu, Zhengjia & Wang, Jieyong & Wang, Xiaoyue & Wang, Yongsheng, 2020. "Understanding the impacts of ‘Grain for Green’ land management practice on land greening dynamics over the Loess Plateau of China," Land Use Policy, Elsevier, vol. 99(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:274:y:2022:i:c:s0378377422005315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.