IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i12p1971-d980310.html
   My bibliography  Save this article

Deep Machine Learning for Forecasting Daily Potential Evapotranspiration in Arid Regions, Case: Atacama Desert Header

Author

Listed:
  • Edwin Pino-Vargas

    (Department of Civil Engineering, Jorge Basadre Grohmann National University, Tacna 23000, Peru)

  • Edgar Taya-Acosta

    (Department of Computer Engineering and Systems, Jorge Basadre Grohmann National University, Tacna 23000, Peru)

  • Eusebio Ingol-Blanco

    (Department of Water Resources, National Agrarian University La Molina, Lima 15012, Peru)

  • Alfonso Torres-Rúa

    (Utah Water Research Laboratory, Civil and Environmental Department, Utah State University, Logan, UT 84322, USA)

Abstract

Accurately estimating and forecasting evapotranspiration is one of the most important tasks to strengthen water resource management, especially in desert areas such as La Yarada, Tacna, Peru, a region located at the head of the Atacama Desert. In this study, we used temperature, humidity, wind speed, air pressure, and solar radiation from a local weather station to forecast potential evapotranspiration (ETo) using machine learning. The Feedforward Neural Network (Multi-Layered Perceptron) algorithm for prediction was used under two approaches: “direct” and “indirect”. In the first one, the ETo is predicted based on historical records, and the second one predicts the climate variables upon which the ETo calculation depends, for which the Penman-Monteith, Hargreaves-Samani, Ritchie, and Turc equations were used. The results were evaluated using statistical criteria to calculate errors, showing remarkable precision, predicting up to 300 days of ETo. Comparing the performance of the approaches and the machine learning used, the results obtained indicate that, despite the similar performance of the two proposed approaches, the indirect approach provides better ETo forecasting capabilities for longer time intervals than the direct approach, whose values of the corresponding metrics are MAE = 0.033, MSE = 0.002, RMSE = 0.043 and RAE = 0.016.

Suggested Citation

  • Edwin Pino-Vargas & Edgar Taya-Acosta & Eusebio Ingol-Blanco & Alfonso Torres-Rúa, 2022. "Deep Machine Learning for Forecasting Daily Potential Evapotranspiration in Arid Regions, Case: Atacama Desert Header," Agriculture, MDPI, vol. 12(12), pages 1-15, November.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:12:p:1971-:d:980310
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/12/1971/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/12/1971/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Samuel Chucuya & Alissa Vera & Edwin Pino-Vargas & André Steenken & Jürgen Mahlknecht & Isaac Montalván, 2022. "Hydrogeochemical Characterization and Identification of Factors Influencing Groundwater Quality in Coastal Aquifers, Case: La Yarada, Tacna, Peru," IJERPH, MDPI, vol. 19(5), pages 1-21, February.
    2. Torres, Alfonso F. & Walker, Wynn R. & McKee, Mac, 2011. "Forecasting daily potential evapotranspiration using machine learning and limited climatic data," Agricultural Water Management, Elsevier, vol. 98(4), pages 553-562, February.
    3. Yang, Yong & Chen, Rensheng & Han, Chuntan & Liu, Zhangwen, 2021. "Evaluation of 18 models for calculating potential evapotranspiration in different climatic zones of China," Agricultural Water Management, Elsevier, vol. 244(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han Chen & Ziqi Zhou & Han Li & Yizhao Wei & Jinhui (Jeanne) Huang & Hong Liang & Weimin Wang, 2023. "Evaluation the Performance of Three Types of Two-Source Evapotranspiration Models in Urban Woodland Areas," Sustainability, MDPI, vol. 15(12), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valipour, Mohammad & Khoshkam, Helaleh & Bateni, Sayed M. & Jun, Changhyun & Band, Shahab S., 2023. "Hybrid machine learning and deep learning models for multi-step-ahead daily reference evapotranspiration forecasting in different climate regions across the contiguous United States," Agricultural Water Management, Elsevier, vol. 283(C).
    2. Fuentes, Sigfredo & Ortega-Farías, Samuel & Carrasco-Benavides, Marcos & Tongson, Eden & Gonzalez Viejo, Claudia, 2024. "Actual evapotranspiration and energy balance estimation from vineyards using micro-meteorological data and machine learning modeling," Agricultural Water Management, Elsevier, vol. 297(C).
    3. Sen Guo & Haoran Zhao & Huiru Zhao, 2017. "A New Hybrid Wind Power Forecaster Using the Beveridge-Nelson Decomposition Method and a Relevance Vector Machine Optimized by the Ant Lion Optimizer," Energies, MDPI, vol. 10(7), pages 1-20, July.
    4. Feng, Jiaojiao & Wang, Weizhen & Xu, Feinan & Wang, Shengtang, 2024. "Evaluating the ability of deep learning on actual daily evapotranspiration estimation over the heterogeneous surfaces," Agricultural Water Management, Elsevier, vol. 291(C).
    5. Granata, Francesco & Di Nunno, Fabio, 2021. "Forecasting evapotranspiration in different climates using ensembles of recurrent neural networks," Agricultural Water Management, Elsevier, vol. 255(C).
    6. Dhivya Elavarasan & Durai Raj Vincent P M & Kathiravan Srinivasan & Chuan-Yu Chang, 2020. "A Hybrid CFS Filter and RF-RFE Wrapper-Based Feature Extraction for Enhanced Agricultural Crop Yield Prediction Modeling," Agriculture, MDPI, vol. 10(9), pages 1-27, September.
    7. Malik, Anurag & Jamei, Mehdi & Ali, Mumtaz & Prasad, Ramendra & Karbasi, Masoud & Yaseen, Zaher Mundher, 2022. "Multi-step daily forecasting of reference evapotranspiration for different climates of India: A modern multivariate complementary technique reinforced with ridge regression feature selection," Agricultural Water Management, Elsevier, vol. 272(C).
    8. Yan, Shicheng & Wu, Lifeng & Fan, Junliang & Zhang, Fucang & Zou, Yufeng & Wu, You, 2021. "A novel hybrid WOA-XGB model for estimating daily reference evapotranspiration using local and external meteorological data: Applications in arid and humid regions of China," Agricultural Water Management, Elsevier, vol. 244(C).
    9. Teresa Lanchipa-Ale & Ana Cruz-Baltuano & Nahuel Molero-Yañez & Samuel Chucuya & Bertha Vera-Barrios & Edwin Pino-Vargas, 2024. "Assessment of Greywater Reuse in a University Building in a Hyper-Arid Region: Quantity, Quality, and Social Acceptance," Sustainability, MDPI, vol. 16(7), pages 1-25, April.
    10. Hassan-Esfahani, Leila & Torres-Rua, Alfonso & McKee, Mac, 2015. "Assessment of optimal irrigation water allocation for pressurized irrigation system using water balance approach, learning machines, and remotely sensed data," Agricultural Water Management, Elsevier, vol. 153(C), pages 42-50.
    11. Kelechi Igwe & Vaishali Sharda & Trevor Hefley, 2023. "Evaluating the Impact of Future Seasonal Climate Extremes on Crop Evapotranspiration of Maize in Western Kansas Using a Machine Learning Approach," Land, MDPI, vol. 12(8), pages 1-26, July.
    12. Masoud Karbasi, 2018. "Forecasting of Multi-Step Ahead Reference Evapotranspiration Using Wavelet- Gaussian Process Regression Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 1035-1052, February.
    13. Su, Qiong & Singh, Vijay P. & Karthikeyan, Raghupathy, 2022. "Improved reference evapotranspiration methods for regional irrigation water demand estimation," Agricultural Water Management, Elsevier, vol. 274(C).
    14. Kim, Ho-Jun & Chandrasekara, Sewwandhi & Kwon, Hyun-Han & Lima, Carlos & Kim, Tae-woong, 2023. "A novel multi-scale parameter estimation approach to the Hargreaves-Samani equation for estimation of Penman-Monteith reference evapotranspiration," Agricultural Water Management, Elsevier, vol. 275(C).
    15. Mingcong Lv & Zhongmei Wang, 2024. "Research on Meteorological Drought Risk Prediction in the Daqing River Basin Based on HADGEM3-RA," Agriculture, MDPI, vol. 14(10), pages 1-20, October.
    16. Luo, Yufeng & Chang, Xiaomin & Peng, Shizhang & Khan, Shahbaz & Wang, Weiguang & Zheng, Qiang & Cai, Xueliang, 2014. "Short-term forecasting of daily reference evapotranspiration using the Hargreaves–Samani model and temperature forecasts," Agricultural Water Management, Elsevier, vol. 136(C), pages 42-51.
    17. Karbasi, Masoud & Jamei, Mehdi & Ali, Mumtaz & Malik, Anurag & Chu, Xuefeng & Farooque, Aitazaz Ahsan & Yaseen, Zaher Mundher, 2023. "Development of an enhanced bidirectional recurrent neural network combined with time-varying filter-based empirical mode decomposition to forecast weekly reference evapotranspiration," Agricultural Water Management, Elsevier, vol. 290(C).
    18. Zhang, Lei & Zhao, Xin & Zhu, Ge & He, Jun & Chen, Jian & Chen, Zhicheng & Traore, Seydou & Liu, Junguo & Singh, Vijay P., 2023. "Short-term daily reference evapotranspiration forecasting using temperature-based deep learning models in different climate zones in China," Agricultural Water Management, Elsevier, vol. 289(C).
    19. Dong, Juan & Xing, Liwen & Cui, Ningbo & Guo, Li & Liang, Chuan & Zhao, Lu & Wang, Zhihui & Gong, Daozhi, 2024. "Estimating reference crop evapotranspiration using optimized empirical methods with a novel improved Grey Wolf Algorithm in four climatic regions of China," Agricultural Water Management, Elsevier, vol. 291(C).
    20. Dong, Juan & Xing, Liwen & Cui, Ningbo & Zhao, Lu & Guo, Li & Wang, Zhihui & Du, Taisheng & Tan, Mingdong & Gong, Daozhi, 2024. "Estimating reference crop evapotranspiration using improved convolutional bidirectional long short-term memory network by multi-head attention mechanism in the four climatic zones of China," Agricultural Water Management, Elsevier, vol. 292(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:12:p:1971-:d:980310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.