IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v241y2020ics0378377420307666.html
   My bibliography  Save this article

Two-dimensional time-lapse imaging of soil wetting and drying cycle using EM38 data across a flood irrigation cotton field

Author

Listed:
  • Zare, Ehsan
  • Arshad, Maryam
  • Zhao, Dongxue
  • Nachimuthu, Gunasekhar
  • Triantafilis, John

Abstract

Understanding the spatiotemporal distribution of soil volumetric water content (θ, m3 m−3) at field level is required to maximise water-use efficiency in irrigated agriculture. Several commercial sensors are available; however, they only provide point-information. To value-add to this soil data, mathematical models can be used in conjunction with proximal sensed data, such as soil apparent electrical conductivity (ECa, mS m-1) or inverted ECa (σ, mS m-1). In this research, we determine if ECa from an electromagnetic (EM) instrument (EM38) at various heights (0, 0.2, 0.4, 0.6, 0.8 and 1.0 m) or σ estimated from ECa can be used to value add to limited θ at four depths (i.e., 0.15, 0.45, 0.75 and 1.35 m). Moreover, we compare which mathematical (i.e. multiple linear regression (MLR), random forest (RF), Cubist, support vector machine (SVM) and Artificial Neural Networks (ANN)) model can best be used to predict θ from σ. We also determine the number of calibration sites required along a uniform heavy-clay transect used for furrow irrigated cotton. In terms of a leave-one-out cross validation, the best Lin’s concordance between measured and predicted θ was achieved using SVM (0.91) when estimates of σ and depth used to model θ . We showed that satisfactory results could be achieved using a single calibration site. Considering the results at day 10 when permanent wilting point was evident, irrigation scheduling could be recommended based on the use of the EM38h0 (80 mS m-1) and EM38v0 (100 mS m-1) reaching critical measurements.

Suggested Citation

  • Zare, Ehsan & Arshad, Maryam & Zhao, Dongxue & Nachimuthu, Gunasekhar & Triantafilis, John, 2020. "Two-dimensional time-lapse imaging of soil wetting and drying cycle using EM38 data across a flood irrigation cotton field," Agricultural Water Management, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:agiwat:v:241:y:2020:i:c:s0378377420307666
    DOI: 10.1016/j.agwat.2020.106383
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377420307666
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106383?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aiguo Dai, 2013. "Increasing drought under global warming in observations and models," Nature Climate Change, Nature, vol. 3(1), pages 52-58, January.
    2. Aiguo Dai, 2013. "Erratum: Increasing drought under global warming in observations and models," Nature Climate Change, Nature, vol. 3(2), pages 171-171, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun Zhang & Lin Li, 2022. "Spatial and Temporal Characteristics of Infiltration Wetting Front of Ring-Shaped Root Emitters," Sustainability, MDPI, vol. 14(11), pages 1-14, May.
    2. Zixuan Zhang & Beibei Niu & Xinju Li & Xingjian Kang & Zhenqi Hu, 2022. "Estimation and Dynamic Analysis of Soil Salinity Based on UAV and Sentinel-2A Multispectral Imagery in the Coastal Area, China," Land, MDPI, vol. 11(12), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jale Amanuel Dufera & Tewodros Addisu Yate & Tadesse Tujuba Kenea, 2023. "Spatiotemporal analysis of drought in Oromia regional state of Ethiopia over the period 1989 to 2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1569-1609, June.
    2. Jinhua Wen & Yian Hua & Chenkai Cai & Shiwu Wang & Helong Wang & Xinyan Zhou & Jian Huang & Jianqun Wang, 2023. "Probabilistic Forecast and Risk Assessment of Flash Droughts Based on Numeric Weather Forecast: A Case Study in Zhejiang, China," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    3. Ashenafi Yimam Kassaye & Guangcheng Shao & Xiaojun Wang & Shiqing Wu, 2021. "Quantification of drought severity change in Ethiopia during 1952–2017," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5096-5121, April.
    4. Gilles Dufrénot & William Ginn & Marc Pourroy, 2023. "ENSO Climate Patterns on Global Economic Conditions," AMSE Working Papers 2308, Aix-Marseille School of Economics, France.
    5. Dingcai Yin & Xiaohua Gou & Haijiang Yang & Kai Wang & Jie Liu & Yiran Zhang & Linlin Gao, 2023. "Elevation-dependent tree growth response to recent warming and drought on eastern Tibetan Plateau," Climatic Change, Springer, vol. 176(6), pages 1-18, June.
    6. Adeline Bichet & Arona Diedhiou & Benoit Hingray & Guillaume Evin & N’Datchoh Evelyne Touré & Klutse Nana Ama Browne & Kouakou Kouadio, 2020. "Assessing uncertainties in the regional projections of precipitation in CORDEX-AFRICA," Climatic Change, Springer, vol. 162(2), pages 583-601, September.
    7. Trnka, Miroslav & Vizina, Adam & Hanel, Martin & Balek, Jan & Fischer, Milan & Hlavinka, Petr & Semerádová, Daniela & Štěpánek, Petr & Zahradníček, Pavel & Skalák, Petr & Eitzinger, Josef & Dubrovský,, 2022. "Increasing available water capacity as a factor for increasing drought resilience or potential conflict over water resources under present and future climate conditions," Agricultural Water Management, Elsevier, vol. 264(C).
    8. Yu, Chaoqing & Huang, Xiao & Chen, Han & Huang, Guorui & Ni, Shaoqiang & Wright, Jonathon S. & Hall, Jim & Ciais, Philippe & Zhang, Jie & Xiao, Yuchen & Sun, Zhanli & Wang, Xuhui & Yu, Le, 2018. "Assessing the impacts of extreme agricultural droughts in China under climate and socioeconomic changes," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 6, pages 689-703.
    9. Ding, Yugang & Xu, Jiangmin, 2023. "Global vulnerability of agricultural commodities to climate risk: Evidence from satellite data," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 669-687.
    10. Weili Duan & Bin He & Daniel Nover & Jingli Fan & Guishan Yang & Wen Chen & Huifang Meng & Chuanming Liu, 2016. "Floods and associated socioeconomic damages in China over the last century," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 401-413, May.
    11. Sergio M. Vicente-Serrano & Miquel Tomas-Burguera & Santiago Beguería & Fergus Reig & Borja Latorre & Marina Peña-Gallardo & M. Yolanda Luna & Ana Morata & José C. González-Hidalgo, 2017. "A High Resolution Dataset of Drought Indices for Spain," Data, MDPI, vol. 2(3), pages 1-10, June.
    12. Jinquan Li & Junmin Pei & Changming Fang & Bo Li & Ming Nie, 2024. "Drought may exacerbate dryland soil inorganic carbon loss under warming climate conditions," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Zefeng Chen & Weiguang Wang & Giovanni Forzieri & Alessandro Cescatti, 2024. "Transition from positive to negative indirect CO2 effects on the vegetation carbon uptake," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Parisa Paymard & Mohammad Bannayan & Reza Sadrabadi Haghighi, 2018. "Analysis of the climate change effect on wheat production systems and investigate the potential of management strategies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 1237-1255, April.
    15. Marco Sannolo & Miguel Angel Carretero, 2019. "Dehydration constrains thermoregulation and space use in lizards," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-17, July.
    16. Zhiyuan Xiang & Meifang Zhao & U. S. Ogbodo, 2020. "Accumulation of Urban Insect Pests in China: 50 Years’ Observations on Camphor Tree ( Cinnamomum camphora )," Sustainability, MDPI, vol. 12(4), pages 1-15, February.
    17. Andrew M. Linke & Frank D. W. Witmer & John O’Loughlin, 2020. "Do people accurately report droughts? Comparison of instrument-measured and national survey data in Kenya," Climatic Change, Springer, vol. 162(3), pages 1143-1160, October.
    18. Sergio M. Vicente‐Serrano & Tim R. McVicar & Diego G. Miralles & Yuting Yang & Miquel Tomas‐Burguera, 2020. "Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    19. Jieming Chou & Tian Xian & Wenjie Dong & Yuan Xu, 2018. "Regional Temporal and Spatial Trends in Drought and Flood Disasters in China and Assessment of Economic Losses in Recent Years," Sustainability, MDPI, vol. 11(1), pages 1-17, December.
    20. Oyediran O. Oyebola & Jackson Efitre & Laban Musinguzi & Augustine E. Falaye, 2021. "Potential adaptation strategies for climate change impact among flood-prone fish farmers in climate hotspot Uganda," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 12761-12790, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:241:y:2020:i:c:s0378377420307666. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.