IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i11p6712-d828452.html
   My bibliography  Save this article

Spatial and Temporal Characteristics of Infiltration Wetting Front of Ring-Shaped Root Emitters

Author

Listed:
  • Jun Zhang

    (College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China
    Xinjiang Institute of Technology, Aksu 843000, China)

  • Lin Li

    (College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China
    Xinjiang Key Laboratory of Hydraulic Engineering Security and Water Disasters Prevention, Urumqi 830052, China)

Abstract

Ring-shaped root emitter is a new type of emitter applicable to the roots of fruit trees in arid areas. To study the characteristics of infiltration wetting front changes in ring-shaped root emitters, the orthogonal test method was used to design nine groups of schemes for four factors: radius of irrigation ring R , burial depth H , number of orifices M , irrigation water volume V and their three levels ( R = 20, 30 and 40 cm; M = 4, 6 and 8; H = 20, 30 and 40 cm, V = 40, 60 and 80 L). The infiltration process of these nine scenarios was simulated using HYDRUS-3D software. The results show that the interference infiltration time exhibited a good power function relationship with the irrigation ring radius, number of orifices and burial depth; before the interference infiltration, the wetting fronts were all in the shape of a rotating ellipsoid centered on the infiltration point and can be expressed by the equations of the upper and lower semi-elliptic curves relative to the infiltration point. With the increase in time, the wetting fronts were centered at the infiltration point and infiltrated in all directions at a different velocity. The transport rate decreased with time. The power function relationship between the wetting fronts and the influencing factors after the interference infiltration in different directions was established, and the coefficient of determination was above 0.888. The wetting front shape after infiltration stabilization can be regarded as a rotating body formed by the vertical wetting front plane around the z-axis. The wetted soil volume of deep percolation, surface and suitable infiltration scenarios was rugby-shaped, apple-shaped with a flattened top and complete apple-shaped, respectively. Burying the irrigation ring at slightly deeper than one-third of the crop root zone is recommended, and half of the horizontal range of the crop root system can be selected as the irrigation ring radius. The research results can provide a reference for selecting root emitter parameters and layout as well as developing a root irrigation system.

Suggested Citation

  • Jun Zhang & Lin Li, 2022. "Spatial and Temporal Characteristics of Infiltration Wetting Front of Ring-Shaped Root Emitters," Sustainability, MDPI, vol. 14(11), pages 1-14, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:11:p:6712-:d:828452
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/11/6712/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/11/6712/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Siyal, A.A. & Skaggs, T.H., 2009. "Measured and simulated soil wetting patterns under porous clay pipe sub-surface irrigation," Agricultural Water Management, Elsevier, vol. 96(6), pages 893-904, June.
    2. Dai, Zhiguang & Fei, Liangjun & Huang, Deliang & Zeng, Jian & Chen, Lin & Cai, Yaohui, 2019. "Coupling effects of irrigation and nitrogen levels on yield, water and nitrogen use efficiency of surge-root irrigated jujube in a semiarid region," Agricultural Water Management, Elsevier, vol. 213(C), pages 146-154.
    3. Zare, Ehsan & Arshad, Maryam & Zhao, Dongxue & Nachimuthu, Gunasekhar & Triantafilis, John, 2020. "Two-dimensional time-lapse imaging of soil wetting and drying cycle using EM38 data across a flood irrigation cotton field," Agricultural Water Management, Elsevier, vol. 241(C).
    4. Al-Ogaidi, Ahmed A.M. & Wayayok, Aimrun & Rowshon, M.K. & Abdullah, Ahmed Fikri, 2016. "Wetting patterns estimation under drip irrigation systems using an enhanced empirical model," Agricultural Water Management, Elsevier, vol. 176(C), pages 203-213.
    5. Moncef, Hammami & Khemaies, Zayani, 2016. "An analytical approach to predict the moistened bulb volume beneath a surface point source," Agricultural Water Management, Elsevier, vol. 166(C), pages 123-129.
    6. Qi, Wei & Zhang, Zhanyu & Wang, Ce & Huang, Mingyi, 2021. "Prediction of infiltration behaviors and evaluation of irrigation efficiency in clay loam soil under Moistube® irrigation," Agricultural Water Management, Elsevier, vol. 248(C).
    7. Nazari, Ehsan & Besharat, Sina & Zeinalzadeh, Kamran & Mohammadi, Adel, 2021. "Measurement and simulation of the water flow and root uptake in soil under subsurface drip irrigation of apple tree," Agricultural Water Management, Elsevier, vol. 255(C).
    8. Sun, Qing & Wang, Yaosheng & Chen, Geng & Yang, Hui & Du, Taisheng, 2018. "Water use efficiency was improved at leaf and yield levels of tomato plants by continuous irrigation using semipermeable membrane," Agricultural Water Management, Elsevier, vol. 203(C), pages 430-437.
    9. Cai, Yaohui & Wu, Pute & Zhang, Lin & Zhu, Delan & Chen, Junying & Wu, ShouJun & Zhao, Xiao, 2017. "Simulation of soil water movement under subsurface irrigation with porous ceramic emitter," Agricultural Water Management, Elsevier, vol. 192(C), pages 244-256.
    10. Singh, D.K. & Rajput, T.B.S. & Singh, D.K. & Sikarwar, H.S. & Sahoo, R.N. & Ahmad, T., 2006. "Simulation of soil wetting pattern with subsurface drip irrigation from line source," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 130-134, May.
    11. Bainbridge, David A., 2001. "Buried clay pot irrigation: a little known but very efficient traditional method of irrigation," Agricultural Water Management, Elsevier, vol. 48(2), pages 79-88, June.
    12. Appels, Willemijn M. & Karimi, Rezvan, 2021. "Analysis of soil wetting patterns in subsurface drip irrigation systems – Indoor alfalfa experiments," Agricultural Water Management, Elsevier, vol. 250(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi, Wei & Zhang, Zhanyu & Wang, Ce & Huang, Mingyi, 2021. "Prediction of infiltration behaviors and evaluation of irrigation efficiency in clay loam soil under Moistube® irrigation," Agricultural Water Management, Elsevier, vol. 248(C).
    2. Wang, Ce & Ye, Jinyang & Zhai, Yaming & Kurexi, Wuerkaixi & Xing, Dong & Feng, Genxiang & Zhang, Qun & Zhang, Zhanyu, 2023. "Dynamics of Moistube discharge, soil-water redistribution and wetting morphology in response to regulated working pressure heads," Agricultural Water Management, Elsevier, vol. 282(C).
    3. Cai, Yaohui & Wu, Pute & Gao, Xiaodong & Zhu, Delan & Zhang, Lin & Dai, Zhiguang & Chau, Henry Wai & Zhao, Xining, 2022. "Subsurface irrigation with ceramic emitters: Evaluating soil water effects under multiple precipitation scenarios," Agricultural Water Management, Elsevier, vol. 272(C).
    4. Nazari, Ehsan & Besharat, Sina & Zeinalzadeh, Kamran & Mohammadi, Adel, 2021. "Measurement and simulation of the water flow and root uptake in soil under subsurface drip irrigation of apple tree," Agricultural Water Management, Elsevier, vol. 255(C).
    5. Kilic, Murat, 2020. "A new analytical method for estimating the 3D volumetric wetting pattern under drip irrigation system," Agricultural Water Management, Elsevier, vol. 228(C).
    6. Zhang, Junwei & Xiang, Lingxiao & Zhu, Chenxi & Li, Wuqiang & Jing, Dan & Zhang, Lili & Liu, Yong & Li, Tianlai & Li, Jianming, 2023. "Evaluating the irrigation schedules of greenhouse tomato by simulating soil water balance under drip irrigation," Agricultural Water Management, Elsevier, vol. 283(C).
    7. Jamei, Mehdi & Maroufpoor, Saman & Aminpour, Younes & Karbasi, Masoud & Malik, Anurag & Karimi, Bakhtiar, 2022. "Developing hybrid data-intelligent method using Boruta-random forest optimizer for simulation of nitrate distribution pattern," Agricultural Water Management, Elsevier, vol. 270(C).
    8. Kisi, Ozgur & Khosravinia, Payam & Heddam, Salim & Karimi, Bakhtiar & Karimi, Nazir, 2021. "Modeling wetting front redistribution of drip irrigation systems using a new machine learning method: Adaptive neuro- fuzzy system improved by hybrid particle swarm optimization – Gravity search algor," Agricultural Water Management, Elsevier, vol. 256(C).
    9. Wang, JiaJia & Long, HuaiYu & Huang, YuanFang & Wang, XiangLing & Cai, Bin & Liu, Wei, 2019. "Effects of different irrigation management parameters on cumulative water supply under negative pressure irrigation," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    10. Baiamonte, Giorgio & Alagna, Vincenzo & Autovino, Dario & Iovino, Massimo & Palermo, Samuel & Vaccaro, Girolamo & Bagarello, Vincenzo, 2024. "Influence of soil hydraulic parameters on bulb size for surface and buried emitters," Agricultural Water Management, Elsevier, vol. 295(C).
    11. Cai, Yaohui & Yao, Chunping & Wu, Pute & Zhang, Lin & Zhu, Delan & Chen, Junying & Du, Yichao, 2021. "Effectiveness of a subsurface irrigation system with ceramic emitters under low-pressure conditions," Agricultural Water Management, Elsevier, vol. 243(C).
    12. Evgenia Mahler, 2024. "Innovations in Clay-Based Irrigation Technologies—A Systematic Review," Sustainability, MDPI, vol. 16(16), pages 1-23, August.
    13. Cai, Yaohui & Wu, Pute & Zhang, Lin & Zhu, Delan & Chen, Junying & Wu, ShouJun & Zhao, Xiao, 2017. "Simulation of soil water movement under subsurface irrigation with porous ceramic emitter," Agricultural Water Management, Elsevier, vol. 192(C), pages 244-256.
    14. Vidana Gamage, D.N. & Biswas, A. & Strachan, I.B., 2018. "Actively heated fiber optics method to monitor three-dimensional wetting patterns under drip irrigation," Agricultural Water Management, Elsevier, vol. 210(C), pages 243-251.
    15. Yunquan Zhang & Peiling Yang, 2023. "A Simulation-Based Optimization Model for Control of Soil Salinization in the Hetao Irrigation District, Northwest China," Sustainability, MDPI, vol. 15(5), pages 1-20, March.
    16. Zhu Zhu & Muhammad Waseem Rasheed & Muhammad Safdar & Baolin Yao & Hudan Tumaerbai & Abid Sarwar & Lianyong Zhu, 2024. "Intermittent Drip Irrigation Soil Wet Front Prediction Model and Effective Water Storage Analysis," Sustainability, MDPI, vol. 16(21), pages 1-19, November.
    17. Siyal, A.A. & Skaggs, T.H., 2009. "Measured and simulated soil wetting patterns under porous clay pipe sub-surface irrigation," Agricultural Water Management, Elsevier, vol. 96(6), pages 893-904, June.
    18. Hojjat Ghorbani Vaghei & Hossein Ali Bahrami & Farzin Nasiri Saleh, 2023. "Optimizing Soil Moisture in Subsurface Irrigation System Based on Porous Clay Capsule Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 3037-3051, June.
    19. Yang, Xin & Bornø, Marie Louise & Wei, Zhenhua & Liu, Fulai, 2021. "Combined effect of partial root drying and elevated atmospheric CO2 on the physiology and fruit quality of two genotypes of tomato plants with contrasting endogenous ABA levels," Agricultural Water Management, Elsevier, vol. 254(C).
    20. Bopp, Carlos & Jara-Rojas, Roberto & Bravo-Ureta, Boris & Engler, Alejandra, 2022. "Irrigation water use, shadow values and productivity: Evidence from stochastic production frontiers in vineyards," Agricultural Water Management, Elsevier, vol. 271(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:11:p:6712-:d:828452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.