IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v235y2020ics0378377419313162.html
   My bibliography  Save this article

Mandarin irrigation scheduling by means of frequency domain reflectometry soil moisture monitoring

Author

Listed:
  • Martínez-Gimeno, M.A.
  • Jiménez-Bello, M.A.
  • Lidón, A.
  • Manzano, J.
  • Badal, E.
  • Pérez-Pérez, J.G.
  • Bonet, L.
  • Intrigliolo, D.S.
  • Esteban, A.

Abstract

The accurate estimation of plant water needs is the first step for achieving high crop water productivity. The main objective of the work was to develop an irrigation scheduling procedure for mandarin orchards under Mediterranean conditions based on replacing the amount of consumed water using reference values of soil moisture according to different phenological periods. The proposed methodology includes a definition part where the threshold values were established relating the trees’ stem water potential and the volumetric soil water content measured with Frequency Domain Reflectometry probes. A second part includes the steps for standardizing measurements from capacitance probes by using the LEACHM hydrological simulation model to take into account the sensor-to-sensor variations. Finally, an extrapolation procedure based on soil water retention curves was used for adapting critical soil water content thresholds to different soil conditions. Field evaluations were made in a citrus orchard located in eastern Spain during two seasons. Standardize critical soil water contents were: i) 24 % vol. for post-harvest, bloom - fruit set and phase III of fruit growth; ii) 27 % vol. for phase I of fruit growth, and iii) 29 % vol. for phase II of fruit growth with average daily air vapour pressure deficit values ranging between 0.2 - 0.4; 0.9–1.1 and 1.1–1.3 kPa, respectively. When implemented in the orchard, the sensor-based strategy resulted in water saving of 26 % respect to a control treatment, irrigated using the standard FAO-56 approach, without significant differences in yield and increasing the crop water productivity by 33 %. In conclusion, we suggest that the determination and use of the critical soil water content is a useful tool for scheduling irrigation. The proposed standardization and extrapolation methodology allows the irrigation strategy to be applied to other mandarin orchards under similar climatic conditions.

Suggested Citation

  • Martínez-Gimeno, M.A. & Jiménez-Bello, M.A. & Lidón, A. & Manzano, J. & Badal, E. & Pérez-Pérez, J.G. & Bonet, L. & Intrigliolo, D.S. & Esteban, A., 2020. "Mandarin irrigation scheduling by means of frequency domain reflectometry soil moisture monitoring," Agricultural Water Management, Elsevier, vol. 235(C).
  • Handle: RePEc:eee:agiwat:v:235:y:2020:i:c:s0378377419313162
    DOI: 10.1016/j.agwat.2020.106151
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419313162
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106151?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ballester, C. & Castel, J. & Intrigliolo, D.S. & Castel, J.R., 2011. "Response of Clementina de Nules citrus trees to summer deficit irrigation. Yield components and fruit composition," Agricultural Water Management, Elsevier, vol. 98(6), pages 1027-1032, April.
    2. Minacapilli, M. & Iovino, M. & D'Urso, G., 2008. "A distributed agro-hydrological model for irrigation water demand assessment," Agricultural Water Management, Elsevier, vol. 95(2), pages 123-132, February.
    3. Zhang, Kefeng & Greenwood, Duncan J. & Spracklen, William P. & Rahn, Clive R. & Hammond, John P. & White, Philip J. & Burns, Ian G., 2010. "A universal agro-hydrological model for water and nitrogen cycles in the soil-crop system SMCR_N: Critical update and further validation," Agricultural Water Management, Elsevier, vol. 97(10), pages 1411-1422, October.
    4. Spinelli, Gerardo M. & Shackel, Ken A. & Gilbert, Matthew E., 2017. "A model exploring whether the coupled effects of plant water supply and demand affect the interpretation of water potentials and irrigation management," Agricultural Water Management, Elsevier, vol. 192(C), pages 271-280.
    5. Autovino, Dario & Rallo, Giovanni & Provenzano, Giuseppe, 2018. "Predicting soil and plant water status dynamic in olive orchards under different irrigation systems with Hydrus-2D: Model performance and scenario analysis," Agricultural Water Management, Elsevier, vol. 203(C), pages 225-235.
    6. Pérez-Pérez, J.G. & Robles, J.M. & Botía, P., 2014. "Effects of deficit irrigation in different fruit growth stages on ‘Star Ruby’ grapefruit trees in semi-arid conditions," Agricultural Water Management, Elsevier, vol. 133(C), pages 44-54.
    7. Girona, J. & Mata, M. & Fereres, E. & Goldhamer, D. A. & Cohen, M., 2002. "Evapotranspiration and soil water dynamics of peach trees under water deficits," Agricultural Water Management, Elsevier, vol. 54(2), pages 107-122, March.
    8. Wallis, K.J. & Candela, L. & Mateos, R.M. & Tamoh, K., 2011. "Simulation of nitrate leaching under potato crops in a Mediterranean area. Influence of frost prevention irrigation on nitrogen transport," Agricultural Water Management, Elsevier, vol. 98(10), pages 1629-1640, August.
    9. Lidón, Antonio & Ramos, Carlos & Ginestar, Damián & Contreras, Wilson, 2013. "Assessment of LEACHN and a simple compartmental model to simulate nitrogen dynamics in citrus orchards," Agricultural Water Management, Elsevier, vol. 121(C), pages 42-53.
    10. Martínez-Gimeno, M.A. & Bonet, L. & Provenzano, G. & Badal, E. & Intrigliolo, D.S. & Ballester, C., 2018. "Assessment of yield and water productivity of clementine trees under surface and subsurface drip irrigation," Agricultural Water Management, Elsevier, vol. 206(C), pages 209-216.
    11. Nicolás, E. & Alarcón, JJ & Mounzer, O. & Pedrero, F. & Nortes, PA & Alcobendas, R. & Romero-Trigueros, C. & Bayona, JM & Maestre-Valero, JF, 2016. "Long-term physiological and agronomic responses of mandarin trees to irrigation with saline reclaimed water," Agricultural Water Management, Elsevier, vol. 166(C), pages 1-8.
    12. Pérez-Pérez, J.G. & García, J. & Robles, J.M. & Botía, P., 2010. "Economic analysis of navel orange cv. 'Lane late' grown on two different drought-tolerant rootstocks under deficit irrigation in South-eastern Spain," Agricultural Water Management, Elsevier, vol. 97(1), pages 157-164, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Puig-Sirera, Àngela & Provenzano, Giuseppe & González-Altozano, Pablo & Intrigliolo, Diego S. & Rallo, Giovanni, 2021. "Irrigation water saving strategies in Citrus orchards: Analysis of the combined effects of timing and severity of soil water deficit," Agricultural Water Management, Elsevier, vol. 248(C).
    2. Peng Gao & Jiaxing Xie & Mingxin Yang & Ping Zhou & Wenbin Chen & Gaotian Liang & Yufeng Chen & Xiongzhe Han & Weixing Wang, 2021. "Improved Soil Moisture and Electrical Conductivity Prediction of Citrus Orchards Based on IoT Using Deep Bidirectional LSTM," Agriculture, MDPI, vol. 11(7), pages 1-22, July.
    3. Ballester, Carlos & Hornbuckle, John & Brinkhoff, James & Quayle, Wendy C., 2021. "Effects of three frequencies of irrigation and nitrogen rates on lint yield, nitrogen use efficiency and fibre quality of cotton under furrow irrigation," Agricultural Water Management, Elsevier, vol. 248(C).
    4. Hou, Panpan & Chen, Dianyu & Wei, Xuehui & Hu, Xiaotao & Duan, Xingwu & Zhang, Jingying & Qiu, Lucheng & Zhang, Linlin, 2023. "Transpiration characteristics and environmental controls of orange orchards in the dry-hot valley region of southwest China," Agricultural Water Management, Elsevier, vol. 288(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maestre-Valero, J.F. & Martin-Gorriz, B. & Alarcón, J.J. & Nicolas, E. & Martinez-Alvarez, V., 2016. "Economic feasibility of implementing regulated deficit irrigation with reclaimed water in a grapefruit orchard," Agricultural Water Management, Elsevier, vol. 178(C), pages 119-125.
    2. Hiba Ghazouani & Giovanni Rallo & Amel Mguidiche & Basma Latrech & Boutheina Douh & Abdelhamid Boujelben & Giuseppe Provenzano, 2019. "Effects of Saline and Deficit Irrigation on Soil-Plant Water Status and Potato Crop Yield under the Semiarid Climate of Tunisia," Sustainability, MDPI, vol. 11(9), pages 1-16, May.
    3. Consoli, S. & Stagno, F. & Roccuzzo, G. & Cirelli, G.L. & Intrigliolo, F., 2014. "Sustainable management of limited water resources in a young orange orchard," Agricultural Water Management, Elsevier, vol. 132(C), pages 60-68.
    4. Kusakabe, A. & Contreras-Barragan, B.A. & Simpson, C.R. & Enciso, J.M. & Nelson, S.D. & Melgar, J.C., 2016. "Application of partial rootzone drying to improve irrigation water use efficiency in grapefruit trees," Agricultural Water Management, Elsevier, vol. 178(C), pages 66-75.
    5. Pedrero, F. & Maestre-Valero, J.F. & Mounzer, O. & Nortes, P.A. & Alcobendas, R. & Romero-Trigueros, C. & Bayona, J.M. & Alarcón, J.J. & Nicolás, E., 2015. "Response of young ‘Star Ruby’ grapefruit trees to regulated deficit irrigation with saline reclaimed water," Agricultural Water Management, Elsevier, vol. 158(C), pages 51-60.
    6. Li, Dazhi & Hendricks Franssen, Harrie-Jan & Han, Xujun & Jiménez-Bello, Miguel Angel & Martínez Alzamora, Fernando & Vereecken, Harry, 2018. "Evaluation of an operational real-time irrigation scheduling scheme for drip irrigated citrus fields in Picassent, Spain," Agricultural Water Management, Elsevier, vol. 208(C), pages 465-477.
    7. Pedrero, Francisco & Grattan, S.R. & Ben-Gal, Alon & Vivaldi, Gaetano Alessandro, 2020. "Opportunities for expanding the use of wastewaters for irrigation of olives," Agricultural Water Management, Elsevier, vol. 241(C).
    8. Russo, David & Laufer, Asher & Bar-Tal, Asher, 2020. "Improving water uptake by trees planted on a clayey soil and irrigated with low-quality water by various management means: A numerical study," Agricultural Water Management, Elsevier, vol. 229(C).
    9. Robles, J.M. & Botía, P. & Pérez-Pérez, J.G., 2017. "Sour orange rootstock increases water productivity in deficit irrigated ‘Verna’ lemon trees compared with Citrus macrophylla," Agricultural Water Management, Elsevier, vol. 186(C), pages 98-107.
    10. Federica Angilè & Gaetano Alessandro Vivaldi & Chiara Roberta Girelli & Laura Del Coco & Gabriele Caponio & Giuseppe Lopriore & Francesco Paolo Fanizzi & Salvatore Camposeo, 2022. "Treated Unconventional Waters Combined with Different Irrigation Strategies Affect 1 H NMR Metabolic Profile of a Monovarietal Extra Virgin Olive Oil," Sustainability, MDPI, vol. 14(3), pages 1-20, January.
    11. Abrisqueta, I. & Vera, J. & Tapia, L.M. & Abrisqueta, J.M. & Ruiz-Sánchez, M.C., 2012. "Soil water content criteria for peach trees water stress detection during the postharvest period," Agricultural Water Management, Elsevier, vol. 104(C), pages 62-67.
    12. Nolz, R. & Cepuder, P. & Balas, J. & Loiskandl, W., 2016. "Soil water monitoring in a vineyard and assessment of unsaturated hydraulic parameters as thresholds for irrigation management," Agricultural Water Management, Elsevier, vol. 164(P2), pages 235-242.
    13. Savé, R. & de Herralde, F. & Aranda, X. & Pla, E. & Pascual, D. & Funes, I. & Biel, C., 2012. "Potential changes in irrigation requirements and phenology of maize, apple trees and alfalfa under global change conditions in Fluvià watershed during XXIst century: Results from a modeling approximat," Agricultural Water Management, Elsevier, vol. 114(C), pages 78-87.
    14. Novak, V. & Hurtalova, T. & Matejka, F., 2005. "Predicting the effects of soil water content and soil water potential on transpiration of maize," Agricultural Water Management, Elsevier, vol. 76(3), pages 211-223, August.
    15. Ma, Xiaochi & Han, Feng & Wu, Jinggui & Ma, Yan & Jacoby, Pete W., 2023. "Optimizing crop water productivity and altering root distribution of Chardonnay grapevine (Vitis vinifera L.) in a silt loam soil through direct root-zone deficit irrigation," Agricultural Water Management, Elsevier, vol. 277(C).
    16. Li, Zhiming & Duan, Songpo & Ouyang, Xin & Song, Shijie & Chen, Diwen & Fan, Xianting & Ding, Hanqing & Shen, Hong, 2024. "Coupled soil moisture management and alginate oligosaccharide strategies enhance citrus orchard production, water and potassium use efficiency by improving the rhizosphere soil environment," Agricultural Water Management, Elsevier, vol. 297(C).
    17. Imbernón-Mulero, Alberto & Gallego-Elvira, Belén & Martínez-Alvarez, Victoriano & Acosta, José A. & Antolinos, Vera & Robles, Juan M. & Navarro, Josefa M. & Maestre-Valero, José F., 2024. "Irrigation of young grapefruits with desalinated seawater: Agronomic and economic outcomes," Agricultural Water Management, Elsevier, vol. 299(C).
    18. Xia Li & Xun Li & Yang Li, 2022. "Research on reclaimed water from the past to the future: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 112-137, January.
    19. Liu, Bingxia & Wang, Shiqin & Kong, Xiaole & Liu, Xiaojing & Sun, Hongyong, 2019. "Modeling and assessing feasibility of long-term brackish water irrigation in vertically homogeneous and heterogeneous cultivated lowland in the North China Plain," Agricultural Water Management, Elsevier, vol. 211(C), pages 98-110.
    20. Ballester, C. & Castel, J. & Intrigliolo, D.S. & Castel, J.R., 2011. "Response of Clementina de Nules citrus trees to summer deficit irrigation. Yield components and fruit composition," Agricultural Water Management, Elsevier, vol. 98(6), pages 1027-1032, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:235:y:2020:i:c:s0378377419313162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.