IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v98y2011i10p1629-1640.html
   My bibliography  Save this article

Simulation of nitrate leaching under potato crops in a Mediterranean area. Influence of frost prevention irrigation on nitrogen transport

Author

Listed:
  • Wallis, K.J.
  • Candela, L.
  • Mateos, R.M.
  • Tamoh, K.

Abstract

The Sa Pobla area (Majorca Island, Spain) heavily depends on the use of groundwater resources for irrigation and urban water supply and is characterised by the presence of intensive potato farming activities. The Plioquaternary aquifer is unconfined and contains high levels of nitrate concentrations. To analyse the risk of contamination to the aquifer arising from agricultural practices, the amount of water and nitrogen leached below the root zone was simulated by the GLEAMS code. Data for model calibration and validation were obtained from field experiments on six potato crops for the years 2004-2007. When air temperatures drop below 1 °C irrigation water is applied to prevent crops from frost damage. During times of anomalously low air temperatures, the risk of nitrate leaching is increased by as much as 318% from frost prevention irrigation under normal local conditions. The GLEAMS simulation model was successfully calibrated for Sa Pobla conditions under potato cropping as shown by RMSE values for the water transport module of 0.19, 0.14 and 0.13 for the calibration period and 0.20, 0.25 and 0.15 for the validation period at depths of 0.3, 0.6, and 0.9 m respectively; and for the chemical transport module the R2 value was 0.82 for the calibration period and 0.60 for the validation period. Consequently, for Sa Pobla conditions, GLEAMS can be used to assess the effectiveness of different agricultural management practices to reduce nitrate leaching. It was concluded that additional irrigation water applied for frost prevention plays a very important role in nitrate leaching below the root zone, which enhances the nitrogen loading to the aquifer.

Suggested Citation

  • Wallis, K.J. & Candela, L. & Mateos, R.M. & Tamoh, K., 2011. "Simulation of nitrate leaching under potato crops in a Mediterranean area. Influence of frost prevention irrigation on nitrogen transport," Agricultural Water Management, Elsevier, vol. 98(10), pages 1629-1640, August.
  • Handle: RePEc:eee:agiwat:v:98:y:2011:i:10:p:1629-1640
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377411001326
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gheysari, Mahdi & Mirlatifi, Seyed Majid & Homaee, Mehdi & Asadi, Mohammad Esmaeil & Hoogenboom, Gerrit, 2009. "Nitrate leaching in a silage maize field under different irrigation and nitrogen fertilizer rates," Agricultural Water Management, Elsevier, vol. 96(6), pages 946-954, June.
    2. Ferreira, T.C. & Goncalves, D.A., 2007. "Crop-yield/water-use production functions of potatoes (Solanum tuberosum, L.) grown under differential nitrogen and irrigation treatments in a hot, dry climate," Agricultural Water Management, Elsevier, vol. 90(1-2), pages 45-55, May.
    3. Doltra, J. & Muñoz, P., 2010. "Simulation of nitrogen leaching from a fertigated crop rotation in a Mediterranean climate using the EU-Rotate_N and Hydrus-2D models," Agricultural Water Management, Elsevier, vol. 97(2), pages 277-285, February.
    4. Rekolainen, S. & Gouy, V. & Francaviglia, R. & Eklo, O. -M. & Barlund, I., 2000. "Simulation of soil water, bromide and pesticide behaviour in soil with the G model," Agricultural Water Management, Elsevier, vol. 44(1-3), pages 201-224, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Concepcion Pla & Javier Valdes-Abellan & Antonio Jose Tenza-Abril & David Benavente, 2016. "Predicting Daily Water Table Fluctuations in Karstic Aquifers from GIS-Based Modelling, Climatic Settings and Extraction Wells," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(7), pages 2531-2545, May.
    2. Martínez-Gimeno, M.A. & Jiménez-Bello, M.A. & Lidón, A. & Manzano, J. & Badal, E. & Pérez-Pérez, J.G. & Bonet, L. & Intrigliolo, D.S. & Esteban, A., 2020. "Mandarin irrigation scheduling by means of frequency domain reflectometry soil moisture monitoring," Agricultural Water Management, Elsevier, vol. 235(C).
    3. Olen, Beau & Wu, JunJie & Langpap, Christian, 2012. "Crop-specific Irrigation Choices for Major Crops on the West Coast: Water Scarcity and Climatic Determinants," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124843, Agricultural and Applied Economics Association.
    4. Liu, Jing & Bi, Xiaoqing & Ma, Maoting & Jiang, Lihua & Du, Lianfeng & Li, Shunjiang & Sun, Qinping & Zou, Guoyuan & Liu, Hongbin, 2019. "Precipitation and irrigation dominate soil water leaching in cropland in Northern China," Agricultural Water Management, Elsevier, vol. 211(C), pages 165-171.
    5. Olen, Beau & Wu, JunJie, 2015. "Impacts of Water Scarcity and Climate on Land Use for Irrigated Agriculture in the U.S. West Coast," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205719, Agricultural and Applied Economics Association.
    6. Malone, R.W. & Kersebaum, K.C. & Kaspar, T.C. & Ma, L. & Jaynes, D.B. & Gillette, K., 2017. "Winter rye as a cover crop reduces nitrate loss to subsurface drainage as simulated by HERMES," Agricultural Water Management, Elsevier, vol. 184(C), pages 156-169.
    7. Poch-Massegú, R. & Jiménez-Martínez, J. & Wallis, K.J. & Ramírez de Cartagena, F. & Candela, L., 2014. "Irrigation return flow and nitrate leaching under different crops and irrigation methods in Western Mediterranean weather conditions," Agricultural Water Management, Elsevier, vol. 134(C), pages 1-13.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bai, Yu & Gao, Jinhua, 2021. "Optimization of the nitrogen fertilizer schedule of maize under drip irrigation in Jilin, China, based on DSSAT and GA," Agricultural Water Management, Elsevier, vol. 244(C).
    2. Wang, Zhen & Li, Jiusheng & Li, Yanfeng, 2014. "Simulation of nitrate leaching under varying drip system uniformities and precipitation patterns during the growing season of maize in the North China Plain," Agricultural Water Management, Elsevier, vol. 142(C), pages 19-28.
    3. Azad, Nasrin & Behmanesh, Javad & Rezaverdinejad, Vahid & Abbasi, Fariborz & Navabian, Maryam, 2018. "Developing an optimization model in drip fertigation management to consider environmental issues and supply plant requirements," Agricultural Water Management, Elsevier, vol. 208(C), pages 344-356.
    4. Karandish, Fatemeh & Šimůnek, Jiří, 2017. "Two-dimensional modeling of nitrogen and water dynamics for various N-managed water-saving irrigation strategies using HYDRUS," Agricultural Water Management, Elsevier, vol. 193(C), pages 174-190.
    5. Abrahao, R. & Causapé, J. & García-Garizábal, I. & Merchán, D., 2011. "Implementing irrigation: Salt and nitrate exported from the Lerma basin (Spain)," Agricultural Water Management, Elsevier, vol. 102(1), pages 105-112.
    6. Zhao Chen & Xv Liu & Junpeng Niu & Wennan Zhou & Tian Zhao & Wenbo Jiang & Jian Cui & Robert Kallenbach & Quanzhen Wang, 2019. "Optimizing irrigation and nitrogen fertilization for seed yield in western wheatgrass [Pascopyrum smithii (Rydb.) Á. Löve] using a large multi-factorial field design," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-21, June.
    7. Amin, M.G. Mostofa & Šimůnek, Jirka & Lægdsmand, Mette, 2014. "Simulation of the redistribution and fate of contaminants from soil-injected animal slurry," Agricultural Water Management, Elsevier, vol. 131(C), pages 17-29.
    8. Gottesburen, B. & Aden, K. & Barlund, I. & Brown, C. & Dust, M. & Gorlitz, G. & Jarvis, N. & Rekolainen, S. & Schafer, H., 2000. "Comparison of pesticide leaching models: results using the Weiherbach data set," Agricultural Water Management, Elsevier, vol. 44(1-3), pages 153-181, May.
    9. Dapeng WANG & Liang ZHENG & Songdong GU & Yuefeng SHI & Long LIANG & Fanqiao MENG & Yanbin GUO & Xiaotang JU & Wenliang WU, 2018. "Soil nitrate accumulation and leaching in conventional, optimized and organic cropping systems," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(4), pages 156-163.
    10. Lu, Junsheng & Geng, Chenming & Cui, Xiaolu & Li, Mengyue & Chen, Shuaihong & Hu, Tiantian, 2021. "Response of drip fertigated wheat-maize rotation system on grain yield, water productivity and economic benefits using different water and nitrogen amounts," Agricultural Water Management, Elsevier, vol. 258(C).
    11. Badr, M.A. & El-Tohamy, W.A. & Salman, S.R. & Gruda, N., 2022. "Yield and water use relationships of potato under different timing and severity of water stress," Agricultural Water Management, Elsevier, vol. 271(C).
    12. Mukherjee, A. & Kundu, M. & Sarkar, S., 2010. "Role of irrigation and mulch on yield, evapotranspiration rate and water use pattern of tomato (Lycopersicon esculentum L.)," Agricultural Water Management, Elsevier, vol. 98(1), pages 182-189, December.
    13. Zou, Haiyang & Fan, Junliang & Zhang, Fucang & Xiang, Youzhen & Wu, Lifeng & Yan, Shicheng, 2020. "Optimization of drip irrigation and fertilization regimes for high grain yield, crop water productivity and economic benefits of spring maize in Northwest China," Agricultural Water Management, Elsevier, vol. 230(C).
    14. Ahmadi, Seyed Hamid & Andersen, Mathias N. & Plauborg, Finn & Poulsen, Rolf T. & Jensen, Christian R. & Sepaskhah, Ali Reza & Hansen, Søren, 2010. "Effects of irrigation strategies and soils on field grown potatoes: Yield and water productivity," Agricultural Water Management, Elsevier, vol. 97(11), pages 1923-1930, November.
    15. Gheysari, Mahdi & Pirnajmedin, Fatemeh & Movahedrad, Hamid & Majidi, Mohammad Mahdi & Zareian, Mohammad Javad, 2021. "Crop yield and irrigation water productivity of silage maize under two water stress strategies in semi-arid environment: Two different pot and field experiments," Agricultural Water Management, Elsevier, vol. 255(C).
    16. Karandish, Fatemeh & Šimůnek, Jiří, 2016. "A field-modeling study for assessing temporal variations of soil-water-crop interactions under water-saving irrigation strategies," Agricultural Water Management, Elsevier, vol. 178(C), pages 291-303.
    17. Ierna, Anita & Pandino, Gaetano & Lombardo, Sara & Mauromicale, Giovanni, 2011. "Tuber yield, water and fertilizer productivity in early potato as affected by a combination of irrigation and fertilization," Agricultural Water Management, Elsevier, vol. 101(1), pages 35-41.
    18. Yan, Fulai & Zhang, Fucang & Fan, Xingke & Fan, Junliang & Wang, Ying & Zou, Haiyang & Wang, Haidong & Li, Guodong, 2021. "Determining irrigation amount and fertilization rate to simultaneously optimize grain yield, grain nitrogen accumulation and economic benefit of drip-fertigated spring maize in northwest China," Agricultural Water Management, Elsevier, vol. 243(C).
    19. Kima, Aimé Sévérin & Traore, Seydou & Wang, Yu-Min & Chung, Wen-Guey, 2014. "Multi-genes programing and local scale regression for analyzing rice yield response to climate factors using observed and downscaled data in Sahel," Agricultural Water Management, Elsevier, vol. 146(C), pages 149-162.
    20. Li, Jinpeng & Wang, Yunqi & Zhang, Meng & Liu, Yang & Xu, Xuexin & Lin, Gang & Wang, Zhimin & Yang, Youming & Zhang, Yinghua, 2019. "Optimized micro-sprinkling irrigation scheduling improves grain yield by increasing the uptake and utilization of water and nitrogen during grain filling in winter wheat," Agricultural Water Management, Elsevier, vol. 211(C), pages 59-69.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:98:y:2011:i:10:p:1629-1640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.