IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v288y2023ics0378377423003323.html
   My bibliography  Save this article

Transpiration characteristics and environmental controls of orange orchards in the dry-hot valley region of southwest China

Author

Listed:
  • Hou, Panpan
  • Chen, Dianyu
  • Wei, Xuehui
  • Hu, Xiaotao
  • Duan, Xingwu
  • Zhang, Jingying
  • Qiu, Lucheng
  • Zhang, Linlin

Abstract

Even though the process of plant water use under individual environmental stress conditions (drought, heat, cold, salinity, etc.) has been widely studied, the processes through which plants cope with multiple stresses (such as water stress combined with hot temperature) remain inconclusive. In the dry-hot valley region of southwest China, soil moisture, temperature, radiation and the associated stresses make complex the process of plant transpiration. To determine environmental controls on the water use of a typical orange tree in the region, sap flow was monitored in the trunks of seven orange trees, meteorological factors and soil water content were recorded between 20 May 2020, and 31 May 2022. The seasons were classified into: rainy (June–October), dry (November–February the other year), and dry-hot (March–May). Results showed that the transpiration of orange trees (Tc) in the study area was 659 mm of water per year. Compared with rainy (2.04 mm d-1) and dry (2.14 mm d-1) seasons, Tc was significantly lower during the dry-hot season (1.38 mm d-1). Rainfall had a significant impact on the transpiration process. Compared with the pre-rainfall value, Tc decreased after light rainfall events (<10 mm), but increased after heavy rainfall events (>10 mm). The variation in Tc increased initially and later gradually decreased with increasing rainfall amount. The minimum rainfall threshold that triggered an increase in Tc was 10.9 mm. Compared with the pre-rainfall days, Tc decreased for almost all types of rainfall event on rainy days. The drop in Tc was driven by the volume, time, and duration of rainfall. There was no direct correlation between Tc and most environmental factors (R2 < 0.40). However, Tc/ET0 (ET0 is grass reference evapotranspiration) was strongly correlated with the environmental factors. Net radiation (R2 = 0.61–0.73), air temperature (R2 = 0.39–0.49), daily maximum air temperature (R2 = 0.49–0.73), vapor pressure deficit (R2 = 0.34–0.45), and ET0 (R2 = 0.64–0.74) were negatively logarithmically correlated with daily Tc/ET0. However, daily Tc/ET0 was positively logarithmically correlated with VWC/ET0; R2 = 0.60–0.83 (where VWC is soil water content) and VWC/Tamax; R2 = 0.32–0.56 (where Tamax is maximum air temperature). Among the studied environmental factors, VWC/ET0 had the highest correlation with Tc/ET0 (R2 as high as 0.83). These results were critical for accurate evaluation of the effects of interaction of water and heat on plant water use. The study is therefore useful for effective water management in arid and semiarid regions. This is particularly so when concurrent hot and dry conditions were considered, likely to occur under future climatic conditions.

Suggested Citation

  • Hou, Panpan & Chen, Dianyu & Wei, Xuehui & Hu, Xiaotao & Duan, Xingwu & Zhang, Jingying & Qiu, Lucheng & Zhang, Linlin, 2023. "Transpiration characteristics and environmental controls of orange orchards in the dry-hot valley region of southwest China," Agricultural Water Management, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:agiwat:v:288:y:2023:i:c:s0378377423003323
    DOI: 10.1016/j.agwat.2023.108467
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423003323
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108467?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Fusheng & Kang, Shaozhong & Li, Fusheng & Zhang, Jianhua & Du, Taisheng & Hu, Xiaotao & Wang, Mixia, 2007. "Effect of water deficit in different growth stages on stem sap flux of greenhouse grown pear-jujube tree," Agricultural Water Management, Elsevier, vol. 90(3), pages 190-196, June.
    2. Liu, Chunwei & Du, Taisheng & Li, Fusheng & Kang, Shaozhong & Li, Sien & Tong, Ling, 2012. "Trunk sap flow characteristics during two growth stages of apple tree and its relationships with affecting factors in an arid region of northwest China," Agricultural Water Management, Elsevier, vol. 104(C), pages 193-202.
    3. Jamshidi, Sajad & Zand-Parsa, Shahrokh & Kamgar-Haghighi, Ali Akbar & Shahsavar, Ali Reza & Niyogi, Dev, 2020. "Evapotranspiration, crop coefficients, and physiological responses of citrus trees in semi-arid climatic conditions," Agricultural Water Management, Elsevier, vol. 227(C).
    4. Oguntunde, Philip G. & van de Giesen, Nick & Savenije, Hubert H.G., 2007. "Measurement and modelling of transpiration of a rain-fed citrus orchard under subhumid tropical conditions," Agricultural Water Management, Elsevier, vol. 87(2), pages 200-208, January.
    5. Roccuzzo, Giancarlo & Villalobos, Francisco J. & Testi, Luca & Fereres, Elías, 2014. "Effects of water deficits on whole tree water use efficiency of orange," Agricultural Water Management, Elsevier, vol. 140(C), pages 61-68.
    6. Martínez-Gimeno, M.A. & Jiménez-Bello, M.A. & Lidón, A. & Manzano, J. & Badal, E. & Pérez-Pérez, J.G. & Bonet, L. & Intrigliolo, D.S. & Esteban, A., 2020. "Mandarin irrigation scheduling by means of frequency domain reflectometry soil moisture monitoring," Agricultural Water Management, Elsevier, vol. 235(C).
    7. Scott Jasechko & Zachary D. Sharp & John J. Gibson & S. Jean Birks & Yi Yi & Peter J. Fawcett, 2013. "Terrestrial water fluxes dominated by transpiration," Nature, Nature, vol. 496(7445), pages 347-350, April.
    8. Chen, Dianyu & Wang, Xing & Liu, Shouyang & Wang, Youke & Gao, Zhiyong & Zhang, Linlin & Wei, Xinguang & Wei, Xindong, 2015. "Using Bayesian analysis to compare the performance of three evapotranspiration models for rainfed jujube (Ziziphus jujuba Mill.) plantations in the Loess Plateau," Agricultural Water Management, Elsevier, vol. 159(C), pages 341-357.
    9. Zhang, Rongfei & Xu, Xianli & Liu, Meixian & Zhang, Yaohua & Xu, Chaohao & Yi, Ruzhou & Luo, Wei, 2018. "Comparing ET-VPD hysteresis in three agroforestry ecosystems in a subtropical humid karst area," Agricultural Water Management, Elsevier, vol. 208(C), pages 454-464.
    10. Chen, Dianyu & Wang, Youke & Liu, Shouyang & Wei, Xinguang & Wang, Xing, 2014. "Response of relative sap flow to meteorological factors under different soil moisture conditions in rainfed jujube (Ziziphus jujuba Mill.) plantations in semiarid Northwest China," Agricultural Water Management, Elsevier, vol. 136(C), pages 23-33.
    11. Puig-Sirera, Àngela & Provenzano, Giuseppe & González-Altozano, Pablo & Intrigliolo, Diego S. & Rallo, Giovanni, 2021. "Irrigation water saving strategies in Citrus orchards: Analysis of the combined effects of timing and severity of soil water deficit," Agricultural Water Management, Elsevier, vol. 248(C).
    12. Chen, Dianyu & Wang, Youke & Wang, Xing & Nie, Zhenyi & Gao, Zhiyong & Zhang, Linlin, 2016. "Effects of branch removal on water use of rain-fed jujube (Ziziphus jujuba Mill.) plantations in Chinese semiarid Loess Plateau region," Agricultural Water Management, Elsevier, vol. 178(C), pages 258-270.
    13. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).
    14. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    15. Al-Rumikhani, Yousef A., 2002. "Effect of crop sequence, soil sample location and depth on soil water holding capacity under center pivot irrigation," Agricultural Water Management, Elsevier, vol. 55(2), pages 93-104, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Dianyu & Hsu, Kuolin & Duan, Xingwu & Wang, Youke & Wei, Xinguang & Muhammad, Saifullah, 2020. "Bayesian analysis of jujube canopy transpiration models: Does embedding the key environmental factor in Jarvis canopy resistance sub-model always associate with improving transpiration modeling?," Agricultural Water Management, Elsevier, vol. 234(C).
    2. Chen, Dianyu & Wang, Youke & Wang, Xing & Nie, Zhenyi & Gao, Zhiyong & Zhang, Linlin, 2016. "Effects of branch removal on water use of rain-fed jujube (Ziziphus jujuba Mill.) plantations in Chinese semiarid Loess Plateau region," Agricultural Water Management, Elsevier, vol. 178(C), pages 258-270.
    3. Chen, Dianyu & Wang, Youke & Liu, Shouyang & Wei, Xinguang & Wang, Xing, 2014. "Response of relative sap flow to meteorological factors under different soil moisture conditions in rainfed jujube (Ziziphus jujuba Mill.) plantations in semiarid Northwest China," Agricultural Water Management, Elsevier, vol. 136(C), pages 23-33.
    4. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Mota, M. & Wang, T., 2021. "Prediction of crop coefficients from fraction of ground cover and height: Practical application to vegetable, field and fruit crops with focus on parameterization," Agricultural Water Management, Elsevier, vol. 252(C).
    5. Nouri, Milad & Homaee, Mehdi & Pereira, Luis S. & Bybordi, Mohammad, 2023. "Water management dilemma in the agricultural sector of Iran: A review focusing on water governance," Agricultural Water Management, Elsevier, vol. 288(C).
    6. Liu, Meihan & Paredes, Paula & Shi, Haibin & Ramos, Tiago B. & Dou, Xu & Dai, Liping & Pereira, Luis S., 2022. "Impacts of a shallow saline water table on maize evapotranspiration and groundwater contribution using static water table lysimeters and the dual Kc water balance model SIMDualKc," Agricultural Water Management, Elsevier, vol. 273(C).
    7. Ebtessam A. Youssef & Marwa M. Abdelbaset & Osama M. Dewedar & José Miguel Molina-Martínez & Ahmed F. El-Shafie, 2023. "Crop Coefficient Estimation and Effect of Abscisic Acid on Red Cabbage Plants ( Brassica oleracea var. Capitata) under Water-Stress Conditions," Agriculture, MDPI, vol. 13(3), pages 1-16, March.
    8. Saitta, Daniela & Consoli, Simona & Ferlito, Filippo & Torrisi, Biagio & Allegra, Maria & Longo-Minnolo, Giuseppe & Ramírez-Cuesta, Juan Miguel & Vanella, Daniela, 2021. "Adaptation of citrus orchards to deficit irrigation strategies," Agricultural Water Management, Elsevier, vol. 247(C).
    9. Liu, Meihan & Shi, Haibin & Paredes, Paula & Ramos, Tiago B. & Dai, Liping & Feng, Zhuangzhuang & Pereira, Luis S., 2022. "Estimating and partitioning maize evapotranspiration as affected by salinity using weighing lysimeters and the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 261(C).
    10. Abou Ali, Asma & Bouchaou, Lhoussaine & Er-Raki, Salah & Hssaissoune, Mohammed & Brouziyne, Youssef & Ezzahar, Jamal & Khabba, Saïd & Chakir, Adnane & Labbaci, Adnane & Chehbouni, Abdelghani, 2023. "Assessment of crop evapotranspiration and deep percolation in a commercial irrigated citrus orchard under semi-arid climate: Combined Eddy-Covariance measurement and soil water balance-based approach," Agricultural Water Management, Elsevier, vol. 275(C).
    11. Tiago B. Ramos & Meihan Liu & Haibin Shi & Paula Paredes & Luis S. Pereira, 2024. "Leaching Efficiency During Autumn Irrigation in China’s Arid Hetao Plain as Influenced by the Depth of Shallow Saline Groundwater and Irrigation Depth, Using Data from Static Water-Table Lysimeters an," Land, MDPI, vol. 13(11), pages 1-11, October.
    12. Feng, Yu & Cui, Ningbo & Du, Taisheng & Gong, Daozhi & Hu, Xiaotao & Zhao, Lu, 2017. "Response of sap flux and evapotranspiration to deficit irrigation of greenhouse pear-jujube trees in semi-arid northwest China," Agricultural Water Management, Elsevier, vol. 194(C), pages 1-12.
    13. Wang, Di & Wang, Li, 2017. "Dynamics of evapotranspiration partitioning for apple trees of different ages in a semiarid region of northwest China," Agricultural Water Management, Elsevier, vol. 191(C), pages 1-15.
    14. Ramos, Tiago B. & Darouich, Hanaa & Oliveira, Ana R. & Farzamian, Mohammad & Monteiro, Tomás & Castanheira, Nádia & Paz, Ana & Gonçalves, Maria C. & Pereira, Luís S., 2023. "Water use and soil water balance of Mediterranean tree crops assessed with the SIMDualKc model in orchards of southern Portugal," Agricultural Water Management, Elsevier, vol. 279(C).
    15. Jiang, Xuelian & Kang, Shaozhong & Li, Fusheng & Du, Taisheng & Tong, Ling & Comas, Louise, 2016. "Evapotranspiration partitioning and variation of sap flow in female and male parents of maize for hybrid seed production in arid region," Agricultural Water Management, Elsevier, vol. 176(C), pages 132-141.
    16. Di Wang, & Wang, Li, 2023. "Characteristics of soil evaporation at two stages of growth in apple orchards with different ages in a semi-humid region," Agricultural Water Management, Elsevier, vol. 280(C).
    17. Gao, Zhiyong & Shi, Wenjuan & Wang, Xing & Wang, Youke & Yang, Yi & Zhang, Linlin & Chen, Dianyu, 2022. "Response of dew and hydraulic redistribution to soil water in a rainfed dryland jujube plantation in China’s Hilly Loess Region," Agricultural Water Management, Elsevier, vol. 271(C).
    18. Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).
    19. Cameira, Maria do Rosário & Rodrigo, Isabel & Garção, Andreia & Neves, Manuela & Ferreira, Antónia & Paredes, Paula, 2024. "Linking participatory approach and rapid appraisal methods to select potential innovations in collective irrigation systems," Agricultural Water Management, Elsevier, vol. 299(C).
    20. Xueqin Jiang & Shanjun Luo & Qin Ye & Xican Li & Weihua Jiao, 2022. "Hyperspectral Estimates of Soil Moisture Content Incorporating Harmonic Indicators and Machine Learning," Agriculture, MDPI, vol. 12(8), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:288:y:2023:i:c:s0378377423003323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.