IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v134y2016i3d10.1007_s10584-016-1601-9.html
   My bibliography  Save this article

Impact of progressive global warming on the global-scale yield of maize and soybean

Author

Listed:
  • Gillian Rose

    (University of Reading
    University of Reading)

  • Tom Osborne

    (Asia Risk Centre)

  • Helen Greatrex

    (Columbia University)

  • Tim Wheeler

    (University of Reading
    University of Reading)

Abstract

Global surface temperature is projected to warm over the coming decades, with regional differences expected in temperature change, rainfall and the frequency of extreme events. Temperature is a major determinant of crop growth and development, affecting planting date, growing season length and yield. We investigated the effects of increments of mean global temperature warming from 0.5 °C to 4 °C on soybean and maize development and yield, both globally and for the main producing countries, and simulated adaptation through changing planting date and variety. Increasing temperature resulted in reduced growing season lengths and ultimately reduced yields for both crops. The global yield for maize decreased as temperature increased, although the severity of the decrease was dependent on geographic region. Small temperature increases of 0.5 °C had no effect on soybean yield, although yield decreased as temperature increased. These negative effects, however, were partly compensated for by the implementation of adaptation strategies including planting earlier in the season and changing variety. The degree of compensation was dependent on geographical area and crop, with maize adaptation delaying the negative effects of temperature on yield, compared to soybean adaptation which increased yield in China, India and Korea DPR as well as delaying the effects in the remaining countries. The results of this paper indicate the degree to which farmer-controlled adaptation strategies can alleviate the negative impacts of increasing temperature on two major crop species.

Suggested Citation

  • Gillian Rose & Tom Osborne & Helen Greatrex & Tim Wheeler, 2016. "Impact of progressive global warming on the global-scale yield of maize and soybean," Climatic Change, Springer, vol. 134(3), pages 417-428, February.
  • Handle: RePEc:spr:climat:v:134:y:2016:i:3:d:10.1007_s10584-016-1601-9
    DOI: 10.1007/s10584-016-1601-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-016-1601-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-016-1601-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matthews, R. B. & Kropff, M. J. & Horie, T. & Bachelet, D., 1997. "Simulating the impact of climate change on rice production in Asia and evaluating options for adaptation," Agricultural Systems, Elsevier, vol. 54(3), pages 399-425, July.
    2. Ana Iglesias & Luis Garrote & Sonia Quiroga & Marta Moneo, 2012. "A regional comparison of the effects of climate change on agricultural crops in Europe," Climatic Change, Springer, vol. 112(1), pages 29-46, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mariola Staniak & Ewa Szpunar-Krok & Anna Kocira, 2023. "Responses of Soybean to Selected Abiotic Stresses—Photoperiod, Temperature and Water," Agriculture, MDPI, vol. 13(1), pages 1-28, January.
    2. Yuki Ishikawa Ishiwata & Jun Furuya, 2020. "Evaluating the Contribution of Soybean Rust- Resistant Cultivars to Soybean Production and the Soybean Market in Brazil: A Supply and Demand Model Analysis," Sustainability, MDPI, vol. 12(4), pages 1-17, February.
    3. Huizhao Yang & Sailesh Ranjitkar & Wenxuan Xu & Lei Han & Jianbo Yang & Liqing Wu & Jianchu Xu, 2021. "Crop-climate model in support of adjusting local ecological calendar in the Taxkorgan, eastern Pamir Plateau," Climatic Change, Springer, vol. 167(3), pages 1-19, August.
    4. Zhao, Jin & Yang, Xiaoguang & Liu, Zhijuan & Pullens, Johannes W.M. & Chen, Ji & Marek, Gary W. & Chen, Yong & Lv, Shuo & Sun, Shuang, 2020. "Greater maize yield improvements in low/unstable yield zones through recommended nutrient and water inputs in the main cropping regions, China," Agricultural Water Management, Elsevier, vol. 232(C).
    5. Muhammad Ahtasham Mushtaq & Hafiz Ghulam Muhu-Din Ahmed & Yawen Zeng, 2024. "Applications of Artificial Intelligence in Wheat Breeding for Sustainable Food Security," Sustainability, MDPI, vol. 16(13), pages 1-24, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gillian Rose & Tom Osborne & Helen Greatrex & Tim Wheeler, 2016. "Impact of progressive global warming on the global-scale yield of maize and soybean," Climatic Change, Springer, vol. 134(3), pages 417-428, February.
    2. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    3. Phogat, V. & Cox, J.W. & Šimůnek, J., 2018. "Identifying the future water and salinity risks to irrigated viticulture in the Murray-Darling Basin, South Australia," Agricultural Water Management, Elsevier, vol. 201(C), pages 107-117.
    4. F. Castro-Llanos & G. Hyman & J. Rubiano & J. Ramirez-Villegas & H. Achicanoy, 2019. "Climate change favors rice production at higher elevations in Colombia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(8), pages 1401-1430, December.
    5. W.Neil Adger, 2001. "Scales of governance and environmental justice for adaptation and mitigation of climate change," Journal of International Development, John Wiley & Sons, Ltd., vol. 13(7), pages 921-931.
    6. Yingchun Li & Wei Xiong & Wei Hu & Pam Berry & Hui Ju & Erda Lin & Wen Wang & Kuo Li & Jie Pan, 2015. "Integrated assessment of China’s agricultural vulnerability to climate change: a multi-indicator approach," Climatic Change, Springer, vol. 128(3), pages 355-366, February.
    7. Jonatan A. Lassa & Allen Yu-Hung Lai & Tian Goh, 2016. "Climate extremes: an observation and projection of its impacts on food production in ASEAN," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 19-33, November.
    8. Tariq Ali & Bo Zhou & David Cleary & Wei Xie, 2022. "The Impact of Climate Change on China and Brazil’s Soybean Trade," Land, MDPI, vol. 11(12), pages 1-16, December.
    9. Stephens, William & Hess, Tim, 1999. "Systems approaches to water management research," Agricultural Water Management, Elsevier, vol. 40(1), pages 3-13, March.
    10. Ole Christensen & Clare Goodess & Juan-Carlos Ciscar, 2012. "Methodological framework of the PESETA project on the impacts of climate change in Europe," Climatic Change, Springer, vol. 112(1), pages 7-28, May.
    11. Steven Passel & Emanuele Massetti & Robert Mendelsohn, 2017. "A Ricardian Analysis of the Impact of Climate Change on European Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 725-760, August.
    12. Tshering Choden & Bhim Bahadur Ghaley, 2021. "A Portfolio of Effective Water and Soil Conservation Practices for Arable Production Systems in Europe and North Africa," Sustainability, MDPI, vol. 13(5), pages 1-18, March.
    13. Tao Li & Olivyn Angeles & Ando Radanielson & Manuel Marcaida & Emmali Manalo, 2015. "Drought stress impacts of climate change on rainfed rice in South Asia," Climatic Change, Springer, vol. 133(4), pages 709-720, December.
    14. Antonio Ledda & Vittorio Serra & Maria Grazia Gavina Ruiu & Antonietta Bardi & Daniele Trogu & Elisabetta Anna Di Cesare & Andrea De Montis, 2024. "Mainstreaming Climate Change Adaptation into Sectoral Plans: An Assessment Based on the Logical Framework Approach," Sustainability, MDPI, vol. 16(9), pages 1-22, April.
    15. Lee, Jaehyuk & Nadolnyak, Denis A. & Hartarska, Valentina M., 2012. "Impact of Climate Change on Agricultural Production in Asian Countries: Evidence from Panel Study," 2012 Annual Meeting, February 4-7, 2012, Birmingham, Alabama 119808, Southern Agricultural Economics Association.
    16. Wei Xie & Qi Cui & Tariq Ali, 2019. "Role of market agents in mitigating the climate change effects on food economy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1215-1231, December.
    17. Isaure Delaporte & Mathilde Maurel, 2018. "Adaptation to climate change in Bangladesh," Climate Policy, Taylor & Francis Journals, vol. 18(1), pages 49-62, January.
    18. Dimitrios Fotakis & Ilias Karmiris & Diogenis A. Kiziridis & Christos Astaras & Thomas G. Papachristou, 2024. "Social-Ecological Spatial Analysis of Agroforestry in the European Union with a Focus on Mediterranean Countries," Agriculture, MDPI, vol. 14(8), pages 1-25, July.
    19. Wiréhn, Lotten, 2018. "Nordic agriculture under climate change: A systematic review of challenges, opportunities and adaptation strategies for crop production," Land Use Policy, Elsevier, vol. 77(C), pages 63-74.
    20. Ackerman, Frank & Stanton, Elizabeth A., 2013. "Climate Impacts on Agriculture: A Challenge to Complacency?," Working Papers 179109, Tufts University, Global Development and Environment Institute.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:134:y:2016:i:3:d:10.1007_s10584-016-1601-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.