IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v208y2018icp95-106.html
   My bibliography  Save this article

Estimating net irrigation requirement of winter wheat using model- and satellite-based single and basal crop coefficients

Author

Listed:
  • Mokhtari, Ali
  • Noory, Hamideh
  • Vazifedoust, Majid
  • Bahrami, Mahdi

Abstract

Evapotranspiration (ET) is one of the key parameters in water and energy balance equation. According to FAO 56, crop evapotranspiration (ETc) is calculated from multiplying reference evapotranspiration (ET0) by crop coefficient (Kc). But, due to excessive simplification of Kc curve in the FAO approach, potential evapotranspiration (ETp) would be miscalculated. Therefore, accurate estimates of ETp entail improving Kc estimates. In this study, Kc curves of early- and late-planted winter wheat were obtained based on two main satellite-based methods: (1) ratio approach (2) vegetation indices (VIs) approach. In the ratio approach, basal crop coefficient (Kcb) and single crop coefficient (Kc) was directly calculated from the ratio of potential transpiration (Tp) to ET0 (using SWAP) and ETp to ET0 (using SWAP and the Priestly-Taylor equation), respectively. The VI approach makes use of Landsat 7 (ETM+) and 8 (OLI) and also MODIS imagery in order to extract soil adjusted vegetation index (SAVI). The Kcb curves were evaluated against field measured leaf area index (LAI) in 2014-15 growing season. After each Kc curve was modeled, net irrigation requirement (NIR) was calculated on daily and season basis. Results showed that the SWAP approach was weak in estimating the Kcb and Kc curves especially at the late-season stage. The VI approach could properly detect changes in vegetation cover during an entire growing season. But, when it came to Kc curve modelling, the VI approach was limited to the values given in FAO 56. However, the Priestly-Taylor approach compensated for this limitation therefore yielded more sensible trends in Kc curves. Results indicated that the VI approach reduced estimates of NIR of late-planted winter wheat compared with the FAO-recommended approach by 5.37%. The Priestly-Taylor approach resulted 21.72 and 0.32% lower NIR compared with the FAO-recommended approach respectively for early- and late-planted winter wheat. The decrease in NIR from satellite-based approaches derived from more realistic Kc curves during the entire growing season. Overall, making use of the satellite-based approaches could improve water management on regional scales.

Suggested Citation

  • Mokhtari, Ali & Noory, Hamideh & Vazifedoust, Majid & Bahrami, Mahdi, 2018. "Estimating net irrigation requirement of winter wheat using model- and satellite-based single and basal crop coefficients," Agricultural Water Management, Elsevier, vol. 208(C), pages 95-106.
  • Handle: RePEc:eee:agiwat:v:208:y:2018:i:c:p:95-106
    DOI: 10.1016/j.agwat.2018.06.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418308011
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.06.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. González-Dugo, M.P. & Escuin, S. & Cano, F. & Cifuentes, V. & Padilla, F.L.M. & Tirado, J.L. & Oyonarte, N. & Fernández, P. & Mateos, L., 2013. "Monitoring evapotranspiration of irrigated crops using crop coefficients derived from time series of satellite images. II. Application on basin scale," Agricultural Water Management, Elsevier, vol. 125(C), pages 92-104.
    2. Gonzalez-Dugo, M.P. & Mateos, L., 2008. "Spectral vegetation indices for benchmarking water productivity of irrigated cotton and sugarbeet crops," Agricultural Water Management, Elsevier, vol. 95(1), pages 48-58, January.
    3. Mateos, L. & González-Dugo, M.P. & Testi, L. & Villalobos, F.J., 2013. "Monitoring evapotranspiration of irrigated crops using crop coefficients derived from time series of satellite images. I. Method validation," Agricultural Water Management, Elsevier, vol. 125(C), pages 81-91.
    4. Narendra Gontia & Kamlesh Tiwari, 2010. "Estimation of Crop Coefficient and Evapotranspiration of Wheat (Triticum aestivum) in an Irrigation Command Using Remote Sensing and GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(7), pages 1399-1414, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pôças, I. & Calera, A. & Campos, I. & Cunha, M., 2020. "Remote sensing for estimating and mapping single and basal crop coefficientes: A review on spectral vegetation indices approaches," Agricultural Water Management, Elsevier, vol. 233(C).
    2. Longo-Minnolo, G. & Vanella, D. & Consoli, S. & Intrigliolo, D.S. & Ramírez-Cuesta, J.M., 2020. "Integrating forecast meteorological data into the ArcDualKc model for estimating spatially distributed evapotranspiration rates of a citrus orchard," Agricultural Water Management, Elsevier, vol. 231(C).
    3. Mokhtari, Ali & Noory, Hamideh & Vazifedoust, Majid & Palouj, Mojtaba & Bakhtiari, Atousa & Barikani, Elham & Zabihi Afrooz, Ramezan Ali & Fereydooni, Fatemeh & Sadeghi Naeni, Ali & Pourshakouri, Farr, 2019. "Evaluation of single crop coefficient curves derived from Landsat satellite images for major crops in Iran," Agricultural Water Management, Elsevier, vol. 218(C), pages 234-249.
    4. Zhang, Yu & Han, Wenting & Zhang, Huihui & Niu, Xiaotao & Shao, Guomin, 2023. "Evaluating maize evapotranspiration using high-resolution UAV-based imagery and FAO-56 dual crop coefficient approach," Agricultural Water Management, Elsevier, vol. 275(C).
    5. Saboori, Mojtaba & Mokhtari, Ali & Afrasiabian, Yasamin & Daccache, Andre & Alaghmand, Sina & Mousivand, Yousef, 2021. "Automatically selecting hot and cold pixels for satellite actual evapotranspiration estimation under different topographic and climatic conditions," Agricultural Water Management, Elsevier, vol. 248(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pôças, I. & Calera, A. & Campos, I. & Cunha, M., 2020. "Remote sensing for estimating and mapping single and basal crop coefficientes: A review on spectral vegetation indices approaches," Agricultural Water Management, Elsevier, vol. 233(C).
    2. Wang, Tianxin & Melton, Forrest S. & Pôças, Isabel & Johnson, Lee F. & Thao, Touyee & Post, Kirk & Cassel-Sharma, Florence, 2021. "Evaluation of crop coefficient and evapotranspiration data for sugar beets from landsat surface reflectances using micrometeorological measurements and weighing lysimetry," Agricultural Water Management, Elsevier, vol. 244(C).
    3. Mokhtari, Ali & Noory, Hamideh & Vazifedoust, Majid & Palouj, Mojtaba & Bakhtiari, Atousa & Barikani, Elham & Zabihi Afrooz, Ramezan Ali & Fereydooni, Fatemeh & Sadeghi Naeni, Ali & Pourshakouri, Farr, 2019. "Evaluation of single crop coefficient curves derived from Landsat satellite images for major crops in Iran," Agricultural Water Management, Elsevier, vol. 218(C), pages 234-249.
    4. Salgado, Ramiro & Mateos, Luciano, 2021. "Evaluation of different methods of estimating ET for the performance assessment of irrigation schemes," Agricultural Water Management, Elsevier, vol. 243(C).
    5. Mahmoud, Shereif H. & Gan, Thian Yew, 2019. "Irrigation water management in arid regions of Middle East: Assessing spatio-temporal variation of actual evapotranspiration through remote sensing techniques and meteorological data," Agricultural Water Management, Elsevier, vol. 212(C), pages 35-47.
    6. Consoli, S. & Vanella, D., 2014. "Mapping crop evapotranspiration by integrating vegetation indices into a soil water balance model," Agricultural Water Management, Elsevier, vol. 143(C), pages 71-81.
    7. Carpintero, E. & Mateos, L. & Andreu, A. & González-Dugo, M.P., 2020. "Effect of the differences in spectral response of Mediterranean tree canopies on the estimation of evapotranspiration using vegetation index-based crop coefficients," Agricultural Water Management, Elsevier, vol. 238(C).
    8. Campos, Isidro & Neale, Christopher M.U. & Suyker, Andrew E. & Arkebauer, Timothy J. & Gonçalves, Ivo Z., 2017. "Reflectance-based crop coefficients REDUX: For operational evapotranspiration estimates in the age of high producing hybrid varieties," Agricultural Water Management, Elsevier, vol. 187(C), pages 140-153.
    9. Garrido-Rubio, Jesús & González-Piqueras, Jose & Campos, Isidro & Osann, Anna & González-Gómez, Laura & Calera, Alfonso, 2020. "Remote sensing–based soil water balance for irrigation water accounting at plot and water user association management scale," Agricultural Water Management, Elsevier, vol. 238(C).
    10. Zinkernagel, Jana & Maestre-Valero, Jose. F. & Seresti, Sogol Y. & Intrigliolo, Diego S., 2020. "New technologies and practical approaches to improve irrigation management of open field vegetable crops," Agricultural Water Management, Elsevier, vol. 242(C).
    11. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    12. Luis Santos Pereira, 2017. "Water, Agriculture and Food: Challenges and Issues," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2985-2999, August.
    13. Campos, Isidro & Balbontín, Claudio & González-Piqueras, Jose & González-Dugo, Maria P. & Neale, Christopher M.U. & Calera, Alfonso, 2016. "Combining a water balance model with evapotranspiration measurements to estimate total available soil water in irrigated and rainfed vineyards," Agricultural Water Management, Elsevier, vol. 165(C), pages 141-152.
    14. Mohamed Kharrou & Michel Le Page & Ahmed Chehbouni & Vincent Simonneaux & Salah Er-Raki & Lionel Jarlan & Lahcen Ouzine & Said Khabba & Ghani Chehbouni, 2013. "Assessment of Equity and Adequacy of Water Delivery in Irrigation Systems Using Remote Sensing-Based Indicators in Semi-Arid Region, Morocco," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4697-4714, October.
    15. Teixeira, Antônio & Leivas, Janice & Struiving, Tiago & Reis, João & Simão, Fúlvio, 2021. "Energy balance and irrigation performance assessments in lemon orchards by applying the SAFER algorithm to Landsat 8 images," Agricultural Water Management, Elsevier, vol. 247(C).
    16. Ouaadi, Nadia & Jarlan, Lionel & Khabba, Saïd & Le Page, Michel & Chakir, Adnane & Er-Raki, Salah & Frison, Pierre-Louis, 2023. "Are the C-band backscattering coefficient and interferometric coherence suitable substitutes of NDVI for the monitoring of the FAO-56 crop coefficient?," Agricultural Water Management, Elsevier, vol. 282(C).
    17. El Hajj, Marcel M. & Johansen, Kasper & Almashharawi, Samer K. & McCabe, Matthew F., 2023. "Water uptake rates over olive orchards using Sentinel-1 synthetic aperture radar data," Agricultural Water Management, Elsevier, vol. 288(C).
    18. Yousaf, Wasif & Awan, Wakas Karim & Kamran, Muhammad & Ahmad, Sajid Rashid & Bodla, Habib Ullah & Riaz, Mohammad & Umar, Muhammad & Chohan, Khurram, 2021. "A paradigm of GIS and remote sensing for crop water deficit assessment in near real time to improve irrigation distribution plan," Agricultural Water Management, Elsevier, vol. 243(C).
    19. Zhang, Yu & Han, Wenting & Zhang, Huihui & Niu, Xiaotao & Shao, Guomin, 2023. "Evaluating maize evapotranspiration using high-resolution UAV-based imagery and FAO-56 dual crop coefficient approach," Agricultural Water Management, Elsevier, vol. 275(C).
    20. Kaplan, Gregoriy & Fine, Lior & Lukyanov, Victor & Malachy, Nitzan & Tanny, Josef & Rozenstein, Offer, 2023. "Using Sentinel-1 and Sentinel-2 imagery for estimating cotton crop coefficient, height, and Leaf Area Index," Agricultural Water Management, Elsevier, vol. 276(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:208:y:2018:i:c:p:95-106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.