IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v226y2019ics0378377419310832.html
   My bibliography  Save this article

Ecological risk assessment of heavy metals in vegetables irrigated with groundwater and wastewater: The particular case of Sahiwal district in Pakistan

Author

Listed:
  • ur Rehman, Khalil
  • Bukhari, Syed Mohsin
  • Andleeb, Shahla
  • Mahmood, Adeel
  • Erinle, Kehinde O.
  • Naeem, Mian Muhammad
  • Imran, Qaiser

Abstract

The use of wastewater for irrigation is a common practice in the developing world. It is a major route of heavy metal contamination in vegetables. The groundwater, an alternative source for irrigation, is under threat of heavy metal contamination due to long-term use of wastewater. The present study investigated heavy metals contamination from irrigation with wastewater compared to groundwater in District Sahiwal situated in the vicinity of Lahore, Pakistan. Irrigated water, soil and vegetables were analyzed for Iron, Nickel, Lead, copper, Cadmium, Manganese and Zinc; Metal transfer factor (MTF); daily intake of metals (DIM) and health risk index (HRI) were calculated. Manganese (Mn) and Cd in wastewater irrigated soil, Pb, Cd, Mn and Fe in wastewater-irrigated vegetables and Pb, Mn and Fe in groundwater-irrigated vegetables exceeded the permissible limits (WHO, 1996), particularly in Mustard and Spinach. Generally, MTF was higher in wastewater than groundwater-irrigated vegetables, particularly with Fe followed by Ni. HRI was higher for wastewater-irrigated than groundwater-irrigated vegetables. Wastewater-irrigated Mustard and Spinach showed a HRI > 1 only for Mn. Quality control mechanisms need to be applied for long-term use of groundwater. Also, treatment of wastewater prior to application to plants must be considered to save crops from contamination.

Suggested Citation

  • ur Rehman, Khalil & Bukhari, Syed Mohsin & Andleeb, Shahla & Mahmood, Adeel & Erinle, Kehinde O. & Naeem, Mian Muhammad & Imran, Qaiser, 2019. "Ecological risk assessment of heavy metals in vegetables irrigated with groundwater and wastewater: The particular case of Sahiwal district in Pakistan," Agricultural Water Management, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:agiwat:v:226:y:2019:i:c:s0378377419310832
    DOI: 10.1016/j.agwat.2019.105816
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419310832
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.105816?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Petousi, I. & Fountoulakis, M.S. & Saru, M.L. & Nikolaidis, N. & Fletcher, L. & Stentiford, E.I. & Manios, T., 2015. "Effects of reclaimed wastewater irrigation on olive (Olea europaea L. cv. ‘Koroneiki’) trees," Agricultural Water Management, Elsevier, vol. 160(C), pages 33-40.
    2. Pedrero, F. & Maestre-Valero, J.F. & Mounzer, O. & Alarcón, J.J. & Nicolás, E., 2014. "Physiological and agronomic mandarin trees performance under saline reclaimed water combined with regulated deficit irrigation," Agricultural Water Management, Elsevier, vol. 146(C), pages 228-237.
    3. Nicolás, E. & Alarcón, JJ & Mounzer, O. & Pedrero, F. & Nortes, PA & Alcobendas, R. & Romero-Trigueros, C. & Bayona, JM & Maestre-Valero, JF, 2016. "Long-term physiological and agronomic responses of mandarin trees to irrigation with saline reclaimed water," Agricultural Water Management, Elsevier, vol. 166(C), pages 1-8.
    4. Licciardello, F. & Milani, M. & Consoli, S. & Pappalardo, N. & Barbagallo, S. & Cirelli, G., 2018. "Wastewater tertiary treatment options to match reuse standards in agriculture," Agricultural Water Management, Elsevier, vol. 210(C), pages 232-242.
    5. Pedrero, Francisco & Allende, Ana & Gil, María I. & Alarcón, Juan J., 2012. "Soil chemical properties, leaf mineral status and crop production in a lemon tree orchard irrigated with two types of wastewater," Agricultural Water Management, Elsevier, vol. 109(C), pages 54-60.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jalil, Hawzhin M. & Rezapour, Salar & Nouri, Amin & Joshi, Navneet, 2022. "Assessing the ecological and health implications of soil heavy metals in vegetable irrigated with wastewater in calcareous environments," Agricultural Water Management, Elsevier, vol. 272(C).
    2. Akhtar, Shahzad & Khan, Zafar Iqbal & Ahmad, Kafeel & Nadeem, Muhammad & Ejaz, Abid & Hussain, Muhammad Iftikhar & Ashraf, Muhammad Arslan, 2022. "Assessment of lead toxicity in diverse irrigation regimes and potential health implications of agriculturally grown crops in Pakistan," Agricultural Water Management, Elsevier, vol. 271(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pedrero, Francisco & Grattan, S.R. & Ben-Gal, Alon & Vivaldi, Gaetano Alessandro, 2020. "Opportunities for expanding the use of wastewaters for irrigation of olives," Agricultural Water Management, Elsevier, vol. 241(C).
    2. Ben Hassena, Ameni & Zouari, Mohamed & Trabelsi, Lina & Khabou, Wahid & Zouari, Nacim, 2018. "Physiological improvements of young olive tree (Olea europaea L. cv. Chetoui) under short term irrigation with treated wastewater," Agricultural Water Management, Elsevier, vol. 207(C), pages 53-58.
    3. Perulli, Giulio Demetrio & Bresilla, Kushtrim & Manfrini, Luigi & Boini, Alexandra & Sorrenti, Giovambattista & Grappadelli, Luca Corelli & Morandi, Brunella, 2019. "Beneficial effect of secondary treated wastewater irrigation on nectarine tree physiology," Agricultural Water Management, Elsevier, vol. 221(C), pages 120-130.
    4. Gao, Yang & Shao, Guangcheng & Wu, Shiqing & Xiaojun, Wang & Lu, Jia & Cui, Jintao, 2021. "Changes in soil salinity under treated wastewater irrigation: A meta-analysis," Agricultural Water Management, Elsevier, vol. 255(C).
    5. Perulli, Giulio Demetrio & Gaggia, Francesca & Sorrenti, Giovambattista & Donati, Irene & Boini, Alexandra & Bresilla, Kushtrim & Manfrini, Luigi & Baffoni, Loredana & Di Gioia, Diana & Grappadelli, L, 2021. "Treated wastewater as irrigation source: a microbiological and chemical evaluation in apple and nectarine trees," Agricultural Water Management, Elsevier, vol. 244(C).
    6. Zalacáin, David & Martínez-Pérez, Silvia & Bienes, Ramón & García-Díaz, Andrés & Sastre-Merlín, Antonio, 2019. "Salt accumulation in soils and plants under reclaimed water irrigation in urban parks of Madrid (Spain)," Agricultural Water Management, Elsevier, vol. 213(C), pages 468-476.
    7. Erel, Ran & Eppel, Amir & Yermiyahu, Uri & Ben-Gal, Alon & Levy, Guy & Zipori, Isaac & Schaumann, Gabriele E. & Mayer, Oliver & Dag, Arnon, 2019. "Long-term irrigation with reclaimed wastewater: Implications on nutrient management, soil chemistry and olive (Olea europaea L.) performance," Agricultural Water Management, Elsevier, vol. 213(C), pages 324-335.
    8. Pedrero, Francisco & Camposeo, Salvatore & Pace, Bernardo & Cefola, Maria & Vivaldi, Gaetano Alessandro, 2018. "Use of reclaimed wastewater on fruit quality of nectarine in Southern Italy," Agricultural Water Management, Elsevier, vol. 203(C), pages 186-192.
    9. Abadía, J. & Bastida, F. & Romero-Trigueros, C. & Bayona, J.M. & Vera, A. & García, C. & Alarcón, J.J. & Nicolás, E., 2021. "Interactions between soil microbial communities and agronomic behavior in a mandarin crop subjected to water deficit and irrigated with reclaimed water," Agricultural Water Management, Elsevier, vol. 247(C).
    10. Conesa, María R. & Conejero, Wenceslao & Vera, Juan & Agulló, Vicente & García-Viguera, Cristina & Ruiz-Sánchez, M. Carmen, 2021. "Irrigation management practices in nectarine fruit quality at harvest and after cold storage," Agricultural Water Management, Elsevier, vol. 243(C).
    11. Bolinches, Antonio & Blanco-Gutiérrez, Irene & Zubelzu, Sergio & Esteve, Paloma & Gómez-Ramos, Almudena, 2022. "A method for the prioritization of water reuse projects in agriculture irrigation," Agricultural Water Management, Elsevier, vol. 263(C).
    12. Russo, David & Laufer, Asher & Bar-Tal, Asher, 2020. "Improving water uptake by trees planted on a clayey soil and irrigated with low-quality water by various management means: A numerical study," Agricultural Water Management, Elsevier, vol. 229(C).
    13. Robles, J.M. & Botía, P. & Pérez-Pérez, J.G., 2017. "Sour orange rootstock increases water productivity in deficit irrigated ‘Verna’ lemon trees compared with Citrus macrophylla," Agricultural Water Management, Elsevier, vol. 186(C), pages 98-107.
    14. Vasileios A. Tzanakakis & Andrea G. Capodaglio & Andreas N. Angelakis, 2023. "Insights into Global Water Reuse Opportunities," Sustainability, MDPI, vol. 15(17), pages 1-30, August.
    15. Trigo-Córdoba, Emiliano & Bouzas-Cid, Yolanda & Orriols-Fernández, Ignacio & Mirás-Avalos, José Manuel, 2015. "Effects of deficit irrigation on the performance of grapevine (Vitis vinifera L.) cv. ‘Godello’ and ‘Treixadura’ in Ribeiro, NW Spain," Agricultural Water Management, Elsevier, vol. 161(C), pages 20-30.
    16. Federica Angilè & Gaetano Alessandro Vivaldi & Chiara Roberta Girelli & Laura Del Coco & Gabriele Caponio & Giuseppe Lopriore & Francesco Paolo Fanizzi & Salvatore Camposeo, 2022. "Treated Unconventional Waters Combined with Different Irrigation Strategies Affect 1 H NMR Metabolic Profile of a Monovarietal Extra Virgin Olive Oil," Sustainability, MDPI, vol. 14(3), pages 1-20, January.
    17. Urbano, Vanessa Ribeiro & Mendonça, Thaís Grandizoli & Bastos, Reinaldo Gaspar & Souza, Claudinei Fonseca, 2017. "Effects of treated wastewater irrigation on soil properties and lettuce yield," Agricultural Water Management, Elsevier, vol. 181(C), pages 108-115.
    18. Younis, Sherif A. & Kim, Ki-Hyun & Shaheen, Sabry M. & Antoniadis, Vasileios & Tsang, Yiu Fai & Rinklebe, Jörg & Deep, Akash & Brown, Richard J.C., 2021. "Advancements of nanotechnologies in crop promotion and soil fertility: Benefits, life cycle assessment, and legislation policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    19. Imbernón-Mulero, Alberto & Gallego-Elvira, Belén & Martínez-Alvarez, Victoriano & Acosta, José A. & Antolinos, Vera & Robles, Juan M. & Navarro, Josefa M. & Maestre-Valero, José F., 2024. "Irrigation of young grapefruits with desalinated seawater: Agronomic and economic outcomes," Agricultural Water Management, Elsevier, vol. 299(C).
    20. Xia Li & Xun Li & Yang Li, 2022. "Research on reclaimed water from the past to the future: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 112-137, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:226:y:2019:i:c:s0378377419310832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.