IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v218y2019icp115-123.html
   My bibliography  Save this article

Pattern of trunk diameter fluctuations of almond trees in deficit irrigation scheduling during the first seasons

Author

Listed:
  • Martín-Palomo, M.J.
  • Corell, M.
  • Girón, I.
  • Andreu, L.
  • Trigo, E.
  • López-Moreno, Y.E.
  • Torrecillas, A.
  • Centeno, A.
  • Pérez-López, D.
  • Moriana, A.

Abstract

Irrigation needs in mature almond orchards are very high. Although almond trees grow in rainfed conditions, the yield response is very sensitive to irrigation. Continuous monitoring of the water status could be an adequate tool to optimize deficit irrigation. In this sense, trunk diameter fluctuations appeared as a very promising indicator at the beginning of the century, but few data have been published. The aim of this work is to check threshold values of maximum daily shrikage (MDS) and identify possible limitations to their use in commercial orchards. The experiment was performed in a commercial farm in Dos Hermanas (Seville, Spain) during the 2017 season on a 7-years-old orchard (cv Vairo). The irrigation treatments were Control (100% ETc), sustained deficit irrigation (SDI) with a maximum seasonal irrigation of 100 mm and two regulated deficit treatments (RDI). Both RDI treatments (RDI-1 and RDI-2) were scheduled using the signal of maximum daily shrinkage (signal) and the midday stem water potential (SWP). In RDI-1, full irrigation conditions were provided before kernel filling and during postharvest, using the threshold values suggested in the bibliography. During kernel filling, the water stress level was designed to be -1.5 MPa (SWP) and 1.75 (signal). RDI-2 trees were irrigated using the same scheduling as RDI-1, but target water stress values were higher in kernel filling (-2 MPa and 2.75) and with a maximum seasonal amount of water of 100 mm. SWP in Control trees was near the McCutchan and Shackel baseline for most of the season. None of the deficit treatments reached the signal values suggested. Moreover, the signal values were almost equal between treatments, with no water stress effect. The trunk growth rate (TGR) presented clear differences depending on the water status.

Suggested Citation

  • Martín-Palomo, M.J. & Corell, M. & Girón, I. & Andreu, L. & Trigo, E. & López-Moreno, Y.E. & Torrecillas, A. & Centeno, A. & Pérez-López, D. & Moriana, A., 2019. "Pattern of trunk diameter fluctuations of almond trees in deficit irrigation scheduling during the first seasons," Agricultural Water Management, Elsevier, vol. 218(C), pages 115-123.
  • Handle: RePEc:eee:agiwat:v:218:y:2019:i:c:p:115-123
    DOI: 10.1016/j.agwat.2019.03.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418318304
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.03.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Girona, J. & Mata, M. & Marsal, J., 2005. "Regulated deficit irrigation during the kernel-filling period and optimal irrigation rates in almond," Agricultural Water Management, Elsevier, vol. 75(2), pages 152-167, July.
    2. Nortes, P.A. & Perez-Pastor, A. & Egea, G. & Conejero, W. & Domingo, R., 2005. "Comparison of changes in stem diameter and water potential values for detecting water stress in young almond trees," Agricultural Water Management, Elsevier, vol. 77(1-3), pages 296-307, August.
    3. Ortuño, M.F. & Conejero, W. & Moreno, F. & Moriana, A. & Intrigliolo, D.S. & Biel, C. & Mellisho, C.D. & Pérez-Pastor, A. & Domingo, R. & Ruiz-Sánchez, M.C. & Casadesus, J. & Bonany, J. & Torrecillas,, 2010. "Could trunk diameter sensors be used in woody crops for irrigation scheduling? A review of current knowledge and future perspectives," Agricultural Water Management, Elsevier, vol. 97(1), pages 1-11, January.
    4. Puerto, P. & Domingo, R. & Torres, R. & Pérez-Pastor, A. & García-Riquelme, M., 2013. "Remote management of deficit irrigation in almond trees based on maximum daily trunk shrinkage. Water relations and yield," Agricultural Water Management, Elsevier, vol. 126(C), pages 33-45.
    5. Gomes-Laranjo, J. & Coutinho, J.P. & Galhano, V. & Cordeiro, V., 2006. "Responses of five almond cultivars to irrigation: Photosynthesis and leaf water potential," Agricultural Water Management, Elsevier, vol. 83(3), pages 261-265, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Doudou & Fernández, José Enrique & Li, Xin & Xi, Benye & Jia, Liming & Hernandez-Santana, Virginia, 2020. "Tree growth patterns and diagnosis of water status based on trunk diameter fluctuations in fast-growing Populus tomentosa plantations," Agricultural Water Management, Elsevier, vol. 241(C).
    2. Martín-Palomo, MJ & Andreu, L. & Pérez-López, D. & Centeno, A. & Galindo, A. & Moriana, A. & Corell, M., 2022. "Trunk growth rate frequencies as water stress indicator in almond trees," Agricultural Water Management, Elsevier, vol. 271(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martín-Palomo, MJ & Andreu, L. & Pérez-López, D. & Centeno, A. & Galindo, A. & Moriana, A. & Corell, M., 2022. "Trunk growth rate frequencies as water stress indicator in almond trees," Agricultural Water Management, Elsevier, vol. 271(C).
    2. García-Tejero, I.F. & Rubio, A.E. & Viñuela, I. & Hernández, A & Gutiérrez-Gordillo, S & Rodríguez-Pleguezuelo, C.R. & Durán-Zuazo, V.H., 2018. "Thermal imaging at plant level to assess the crop-water status in almond trees (cv. Guara) under deficit irrigation strategies," Agricultural Water Management, Elsevier, vol. 208(C), pages 176-186.
    3. Li, Doudou & Fernández, José Enrique & Li, Xin & Xi, Benye & Jia, Liming & Hernandez-Santana, Virginia, 2020. "Tree growth patterns and diagnosis of water status based on trunk diameter fluctuations in fast-growing Populus tomentosa plantations," Agricultural Water Management, Elsevier, vol. 241(C).
    4. De la Rosa, J.M. & Domingo, R. & Gómez-Montiel, J. & Pérez-Pastor, A., 2015. "Implementing deficit irrigation scheduling through plant water stress indicators in early nectarine trees," Agricultural Water Management, Elsevier, vol. 152(C), pages 207-216.
    5. Pérez-López, D. & Pérez-Rodríguez, J.M. & Moreno, M.M. & Prieto, M.H. & Ramírez-Santa-Pau, M. & Gijón, M.C. & Guerrero, J. & Moriana, A., 2013. "Influence of different cultivars–locations on maximum daily shrinkage indicators: Limits to the reference baseline approach," Agricultural Water Management, Elsevier, vol. 127(C), pages 31-39.
    6. Egea, Gregorio & Nortes, Pedro A. & González-Real, María M. & Baille, Alain & Domingo, Rafael, 2010. "Agronomic response and water productivity of almond trees under contrasted deficit irrigation regimes," Agricultural Water Management, Elsevier, vol. 97(1), pages 171-181, January.
    7. Temnani, Abdelmalek & Berríos, Pablo & Zapata-García, Susana & Pérez-Pastor, Alejandro, 2023. "Deficit irrigation strategies of flat peach trees under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 287(C).
    8. Mirás-Avalos, José M. & Gonzalez-Dugo, Victoria & García-Tejero, Iván F. & López-Urrea, Ramón & Intrigliolo, Diego S. & Egea, Gregorio, 2023. "Quantitative analysis of almond yield response to irrigation regimes in Mediterranean Spain," Agricultural Water Management, Elsevier, vol. 279(C).
    9. Silber, A. & Levi, M. & Cohen, M. & David, N. & Shtaynmetz, Y. & Assouline, S., 2007. "Response of Leucadendron `Safari Sunset' to regulated deficit irrigation: Effects of stress timing on growth and yield quality," Agricultural Water Management, Elsevier, vol. 87(2), pages 162-170, January.
    10. Conesa, M.R. & Torres, R. & Domingo, R. & Navarro, H. & Soto, F. & Pérez-Pastor, A., 2016. "Maximum daily trunk shrinkage and stem water potential reference equations for irrigation scheduling in table grapes," Agricultural Water Management, Elsevier, vol. 172(C), pages 51-61.
    11. Blanco, Víctor & Domingo, Rafael & Pérez-Pastor, Alejandro & Blaya-Ros, Pedro José & Torres-Sánchez, Roque, 2018. "Soil and plant water indicators for deficit irrigation management of field-grown sweet cherry trees," Agricultural Water Management, Elsevier, vol. 208(C), pages 83-94.
    12. Cuevas, M.V. & Torres-Ruiz, J.M. & Álvarez, R. & Jiménez, M.D. & Cuerva, J. & Fernández, J.E., 2010. "Assessment of trunk diameter variation derived indices as water stress indicators in mature olive trees," Agricultural Water Management, Elsevier, vol. 97(9), pages 1293-1302, September.
    13. Gutiérrez-Gordillo, S. & Durán-Zuazo, V.H. & García-Tejero, I., 2019. "Response of three almond cultivars subjected to different irrigation regimes in Guadalquivir river basin," Agricultural Water Management, Elsevier, vol. 222(C), pages 72-81.
    14. Assouline, Shmuel & Hochberg, Uri & Silber, Avner, 2021. "The impact of tree phenology on the response of irrigated avocado: The hysteretic nature of the maximum trunk daily shrinkage," Agricultural Water Management, Elsevier, vol. 256(C).
    15. Du, Shaoqing & Tong, Ling & Zhang, Xiaotao & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Signal intensity based on maximum daily stem shrinkage can reflect the water status of apple trees under alternate partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 190(C), pages 21-30.
    16. Phogat, V. & Pitt, T. & Cox, J.W. & Šimůnek, J. & Skewes, M.A., 2018. "Soil water and salinity dynamics under sprinkler irrigated almond exposed to a varied salinity stress at different growth stages," Agricultural Water Management, Elsevier, vol. 201(C), pages 70-82.
    17. Corell, M. & Girón, I.F. & Galindo, A. & Torrecillas, A. & Torres-Sánchez, R. & Pérez-Pastor, A. & Moreno, F. & Moriana, A., 2014. "Using band dendrometers in irrigation scheduling," Agricultural Water Management, Elsevier, vol. 142(C), pages 29-37.
    18. Intrigliolo, D.S. & Puerto, H. & Bonet, L. & Alarcón, J.J. & Nicolas, E. & Bartual, J., 2011. "Usefulness of trunk diameter variations as continuous water stress indicators of pomegranate (Punica granatum) trees," Agricultural Water Management, Elsevier, vol. 98(9), pages 1462-1468, July.
    19. Ballester, C. & Buesa, I. & Bonet, L. & Intrigliolo, D.S., 2014. "Usefulness of stem dendrometers as continuous indicator of loquat trees water status," Agricultural Water Management, Elsevier, vol. 142(C), pages 110-114.
    20. Blanco, Victor & Kalcsits, Lee, 2023. "Long-term validation of continuous measurements of trunk water potential and trunk diameter indicate different diurnal patterns for pear under water limitations," Agricultural Water Management, Elsevier, vol. 281(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:218:y:2019:i:c:p:115-123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.