IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v216y2019icp214-223.html
   My bibliography  Save this article

A comprehensive stress indicator for evaluating plant water status in almond trees

Author

Listed:
  • Drechsler, Kelley
  • Kisekka, Isaya
  • Upadhyaya, Shrinivasa

Abstract

This study evaluated a comprehensive plant water stress indicator that integrates the leaf temperature and the environmental conditions that can provide feedback on the plant response to irrigation scheduling. This quantity—Comprehensive Stress Indicator (CSI)—is based on the reformulation of the leaf energy balance equation. Specifically, CSI is the ratio of the temperature difference between a dry leaf (i.e., a leaf with a broken stem) and a live leaf (on the same tree) [i.e., Tdry-Tleaf] and the difference between the vapor pressure inside the stomatal cavity at saturation and the vapor pressure of the air at ambient temperature [i.e., es(TL)-e(TA)]. The required measurements to compute CSI include dry leaf temperature, live leaf temperature, relative humidity, and air temperature at the tree being monitored. In this study, all measurements were obtained using a sensor suite called the leaf monitor. Leaf monitors were connected to a wireless mesh network to communicate the data to a website. The leaf monitor included two thermal infrared sensors, one for the dry leaf and one for the live leaf, both of which were housed in the same unit with almost identical environmental conditions due to a diffusing hemispherical dome that enclosed these sensors. The CSI is a dynamic indicator with a value for every data sample collected. For a single indicator representing each day, the CSI was evaluated in two ways. First, the CSI was integrated with respect to time from 10 A.M. to 6 P.M. to obtain the Integrated Comprehensive Stress Indicator (ICSI). Second, the CSI was averaged from 1 P.M. to 3 P.M. to obtain the Average Comprehensive Stress Indicator (ACSI). Both ICSI and ACSI were compared to other stress indicators, including the existing Crop Water Stress Index (CWSI) and Integrated Degrees Above Non-Stressed (IDANS). Results show that ICSI and ACSI are satisfactorily correlated with midday stem water potential (SWP). The ICSI and ACSI indicators may be more convenient than other stress indicators because they require measurements only at the tree being monitored.

Suggested Citation

  • Drechsler, Kelley & Kisekka, Isaya & Upadhyaya, Shrinivasa, 2019. "A comprehensive stress indicator for evaluating plant water status in almond trees," Agricultural Water Management, Elsevier, vol. 216(C), pages 214-223.
  • Handle: RePEc:eee:agiwat:v:216:y:2019:i:c:p:214-223
    DOI: 10.1016/j.agwat.2019.02.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418313763
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.02.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. O'Shaughnessy, S.A. & Evett, S.R., 2010. "Canopy temperature based system effectively schedules and controls center pivot irrigation of cotton," Agricultural Water Management, Elsevier, vol. 97(9), pages 1310-1316, September.
    2. DeJonge, Kendall C. & Taghvaeian, Saleh & Trout, Thomas J. & Comas, Louise H., 2015. "Comparison of canopy temperature-based water stress indices for maize," Agricultural Water Management, Elsevier, vol. 156(C), pages 51-62.
    3. O'Shaughnessy, Susan A. & Evett, Steven R. & Colaizzi, Paul D. & Howell, Terry A., 2012. "A crop water stress index and time threshold for automatic irrigation scheduling of grain sorghum," Agricultural Water Management, Elsevier, vol. 107(C), pages 122-132.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Teresa R. Freitas & João A. Santos & Ana P. Silva & Helder Fraga, 2023. "Reviewing the Adverse Climate Change Impacts and Adaptation Measures on Almond Trees ( Prunus dulcis )," Agriculture, MDPI, vol. 13(7), pages 1-19, July.
    2. Nakabuye, Hope Njuki & Rudnick, Daran & DeJonge, Kendall C. & Lo, Tsz Him & Heeren, Derek & Qiao, Xin & Franz, Trenton E. & Katimbo, Abia & Duan, Jiaming, 2022. "Real-time irrigation scheduling of maize using Degrees Above Non-Stressed (DANS) index in semi-arid environment," Agricultural Water Management, Elsevier, vol. 274(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ezenne, G.I. & Jupp, Louise & Mantel, S.K. & Tanner, J.L., 2019. "Current and potential capabilities of UAS for crop water productivity in precision agriculture," Agricultural Water Management, Elsevier, vol. 218(C), pages 158-164.
    2. Nakabuye, Hope Njuki & Rudnick, Daran & DeJonge, Kendall C. & Lo, Tsz Him & Heeren, Derek & Qiao, Xin & Franz, Trenton E. & Katimbo, Abia & Duan, Jiaming, 2022. "Real-time irrigation scheduling of maize using Degrees Above Non-Stressed (DANS) index in semi-arid environment," Agricultural Water Management, Elsevier, vol. 274(C).
    3. Katimbo, Abia & Rudnick, Daran R. & DeJonge, Kendall C. & Lo, Tsz Him & Qiao, Xin & Franz, Trenton E. & Nakabuye, Hope Njuki & Duan, Jiaming, 2022. "Crop water stress index computation approaches and their sensitivity to soil water dynamics," Agricultural Water Management, Elsevier, vol. 266(C).
    4. Zhang, Minne & Zhao, Weixia & Zhu, Changxin & Li, Jiusheng, 2024. "Influence of the sampling time interval of canopy temperature on the dynamic zoning of variable rate irrigation," Agricultural Water Management, Elsevier, vol. 295(C).
    5. Wu, Yinshan & Jiang, Jie & Zhang, Xiufeng & Zhang, Jiayi & Cao, Qiang & Tian, Yongchao & Zhu, Yan & Cao, Weixing & Liu, Xiaojun, 2023. "Combining machine learning algorithm and multi-temporal temperature indices to estimate the water status of rice," Agricultural Water Management, Elsevier, vol. 289(C).
    6. Morales-Santos, Angela & Nolz, Reinhard, 2023. "Assessment of canopy temperature-based water stress indices for irrigated and rainfed soybeans under subhumid conditions," Agricultural Water Management, Elsevier, vol. 279(C).
    7. Anzhen Qin & Dongfeng Ning & Zhandong Liu & Sen Li & Ben Zhao & Aiwang Duan, 2021. "Determining Threshold Values for a Crop Water Stress Index-Based Center Pivot Irrigation with Optimum Grain Yield," Agriculture, MDPI, vol. 11(10), pages 1-16, October.
    8. Kullberg, Emily G. & DeJonge, Kendall C. & Chávez, José L., 2017. "Evaluation of thermal remote sensing indices to estimate crop evapotranspiration coefficients," Agricultural Water Management, Elsevier, vol. 179(C), pages 64-73.
    9. Colaizzi, Paul D. & O’Shaughnessy, Susan A. & Evett, Steve R. & Mounce, Ryan B., 2017. "Crop evapotranspiration calculation using infrared thermometers aboard center pivots," Agricultural Water Management, Elsevier, vol. 187(C), pages 173-189.
    10. O’Shaughnessy, Susan A. & Evett, Steven R. & Colaizzi, Paul D., 2015. "Dynamic prescription maps for site-specific variable rate irrigation of cotton," Agricultural Water Management, Elsevier, vol. 159(C), pages 123-138.
    11. O’Shaughnessy, Susan A. & Kim, Minyoung & Andrade, Manuel A. & Colaizzi, Paul D. & Evett, Steven R., 2020. "Site-specific irrigation of grain sorghum using plant and soil water sensing feedback - Texas High Plains," Agricultural Water Management, Elsevier, vol. 240(C).
    12. Singh, Jasreman & Ge, Yufeng & Heeren, Derek M. & Walter-Shea, Elizabeth & Neale, Christopher M.U. & Irmak, Suat & Woldt, Wayne E. & Bai, Geng & Bhatti, Sandeep & Maguire, Mitchell S., 2021. "Inter-relationships between water depletion and temperature differential in row crop canopies in a sub-humid climate," Agricultural Water Management, Elsevier, vol. 256(C).
    13. DeJonge, Kendall C. & Taghvaeian, Saleh & Trout, Thomas J. & Comas, Louise H., 2015. "Comparison of canopy temperature-based water stress indices for maize," Agricultural Water Management, Elsevier, vol. 156(C), pages 51-62.
    14. Khorsand, Afshin & Rezaverdinejad, Vahid & Asgarzadeh, Hossein & Majnooni-Heris, Abolfazl & Rahimi, Amir & Besharat, Sina, 2019. "Irrigation scheduling of maize based on plant and soil indices with surface drip irrigation subjected to different irrigation regimes," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    15. Han, Ming & Zhang, Huihui & DeJonge, Kendall C. & Comas, Louise H. & Gleason, Sean, 2018. "Comparison of three crop water stress index models with sap flow measurements in maize," Agricultural Water Management, Elsevier, vol. 203(C), pages 366-375.
    16. Zhang, Liyuan & Zhang, Huihui & Zhu, Qingzhen & Niu, Yaxiao, 2023. "Further investigating the performance of crop water stress index for maize from baseline fluctuation, effects of environmental factors, and variation of critical value," Agricultural Water Management, Elsevier, vol. 285(C).
    17. Silva, Marcos Dornelas Freitas Machado e & Calijuri, Maria Lúcia & Sales, Francisco José Ferreira de & Souza, Mauro Henrique Batalha de & Lopes, Lucas Sampaio, 2014. "Integration of technologies and alternative sources of water and energy to promote the sustainability of urban landscapes," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 71-81.
    18. Vantyghem, Mathilde & Merckx, Roel & Stevens, Bert & Hood-Nowotny, Rebecca & Swennen, Rony & Dercon, Gerd, 2022. "The potential of stable carbon isotope ratios and leaf temperature as proxies for drought stress in banana under field conditions," Agricultural Water Management, Elsevier, vol. 260(C).
    19. O'Shaughnessy, S.A. & Evett, S.R. & Colaizzi, P.D. & Howell, T.A., 2011. "Using radiation thermography and thermometry to evaluate crop water stress in soybean and cotton," Agricultural Water Management, Elsevier, vol. 98(10), pages 1523-1535, August.
    20. Laouisset, M. B. & Dellal, A., 2016. "Estimation of Barley (Hordeum Vulgare L.) Crop Water Requirements Using Cropwat Software in Ksar-Chellala Region, Algeria," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 8(3), pages 1-12, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:216:y:2019:i:c:p:214-223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.