IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v299y2024ics0378377424002269.html
   My bibliography  Save this article

Customizing pyfao56 for evapotranspiration estimation and irrigation scheduling at the Limited Irrigation Research Farm (LIRF), Greeley, Colorado

Author

Listed:
  • DeJonge, Kendall C.
  • Thorp, Kelly R.
  • Brekel, Josh
  • Pokoski, Tyler
  • Trout, Thomas J.

Abstract

Estimation of evapotranspiration (ET, the water used by soil evaporation and plant transpiration) and soil water depletion (Dr, the amount of water to bring the soil water in the root zone to field capacity) are critical in irrigation water management. The open-source Python-based crop ET and water balance modeling package named “pyfao56” was originally developed based on the dual crop coefficient approach as described in the Food and Agricultural Organization of the United Nations, Irrigation and Drainage Paper No. 56 (FAO-56). The package later expanded on the seminal FAO-56 document to consider various options relevant to ET and water balance modeling, including both short (grass) and tall (alfalfa) reference crops, optional discretization of variable soil layers based on field capacity, and interpretation of readily available water (RAW) and Dr based on both a dynamic (growing) root zone and maximum root zone. The package requires two input data objects; the “Parameters” class defines variables affecting soil water balance and ET and the “Weather” class specifies relevant meteorological data. Other optional input data objects include the “Irrigation” class for irrigation events, the “Soil_Profile: class for defining stratified soil layer data, and the “Update” class for assimilation of measured data. Additional tools are available for estimating and forecasting standardized reference ET (ETref), providing seasonal water balance summaries, computing goodness-of-fit statistics between measured and modeled values, and visualizing time series plots of daily Dr, ET, and crop coefficients. The current pyfao56 release (v1.2.1) was incorporated into a customized workflow for specific use at the USDA-ARS Limited Irrigation Research Farm (LIRF) in Greeley, Colorado, and named the LIRF Implementation of Pyfao56 (LIRFIP). Field data from 2023 full and limited irrigation field trials were used to demonstrate the functionality of LIRFIP and its customizations and integration of pyfao56 into the LIRF workflow. Specific customizations included use of pyfao56 “customload” functions to input data from various sources, including weather from an on-site micrometerological station (using the application programming interface (API) developed by the maintainers of the Colorado Agricultural Meteorological (CoAgMet) weather station network), irrigation events (via a shared Google docs sheet), field capacity values by plot and soil layer (via an Excel spreadsheet), and measured soil water content as well as basal crop coefficient (Kcb) calculated from fractional canopy cover (fc) (via an SQLite database). To evaluate multiple research plots, LIRFIP was designed to iterate simulations from multiple instances of pyfao56 and to produce customized output summary files and interactive hypertext markup language (html) graphs as an aid for irrigation management decisions for LIRF field trials. This study demonstrated pyfao56 as a useful, flexible, customizable, and repeatable ET-based water balance model by showcasing its integration within a specific computational workflow for irrigation management field research at LIRF. The approach serves as an example for pyfao56 integration in other water management tools as conceived by water managers, researchers, and practitioners worldwide.

Suggested Citation

  • DeJonge, Kendall C. & Thorp, Kelly R. & Brekel, Josh & Pokoski, Tyler & Trout, Thomas J., 2024. "Customizing pyfao56 for evapotranspiration estimation and irrigation scheduling at the Limited Irrigation Research Farm (LIRF), Greeley, Colorado," Agricultural Water Management, Elsevier, vol. 299(C).
  • Handle: RePEc:eee:agiwat:v:299:y:2024:i:c:s0378377424002269
    DOI: 10.1016/j.agwat.2024.108891
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424002269
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108891?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pereira, L.S. & Paredes, P. & Jovanovic, N., 2020. "Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach," Agricultural Water Management, Elsevier, vol. 241(C).
    2. Nakabuye, Hope Njuki & Rudnick, Daran & DeJonge, Kendall C. & Lo, Tsz Him & Heeren, Derek & Qiao, Xin & Franz, Trenton E. & Katimbo, Abia & Duan, Jiaming, 2022. "Real-time irrigation scheduling of maize using Degrees Above Non-Stressed (DANS) index in semi-arid environment," Agricultural Water Management, Elsevier, vol. 274(C).
    3. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Wang, T. & López-Urrea, R. & Cancela, J.J. & Allen, R.G., 2020. "Prediction of crop coefficients from fraction of ground cover and height. Background and validation using ground and remote sensing data," Agricultural Water Management, Elsevier, vol. 241(C).
    4. Comas, Louise H. & Trout, Thomas J. & DeJonge, Kendall C. & Zhang, Huihui & Gleason, Sean M., 2019. "Water productivity under strategic growth stage-based deficit irrigation in maize," Agricultural Water Management, Elsevier, vol. 212(C), pages 433-440.
    5. DeJonge, Kendall C. & Taghvaeian, Saleh & Trout, Thomas J. & Comas, Louise H., 2015. "Comparison of canopy temperature-based water stress indices for maize," Agricultural Water Management, Elsevier, vol. 156(C), pages 51-62.
    6. Kullberg, Emily G. & DeJonge, Kendall C. & Chávez, José L., 2017. "Evaluation of thermal remote sensing indices to estimate crop evapotranspiration coefficients," Agricultural Water Management, Elsevier, vol. 179(C), pages 64-73.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shao, Guomin & Han, Wenting & Zhang, Huihui & Zhang, Liyuan & Wang, Yi & Zhang, Yu, 2023. "Prediction of maize crop coefficient from UAV multisensor remote sensing using machine learning methods," Agricultural Water Management, Elsevier, vol. 276(C).
    2. Zhang, Yu & Han, Wenting & Zhang, Huihui & Niu, Xiaotao & Shao, Guomin, 2023. "Evaluating maize evapotranspiration using high-resolution UAV-based imagery and FAO-56 dual crop coefficient approach," Agricultural Water Management, Elsevier, vol. 275(C).
    3. Amazirh, Abdelhakim & Er-Raki, Salah & Ojha, Nitu & Bouras, El houssaine & Rivalland, Vincent & Merlin, Olivier & Chehbouni, Abdelghani, 2022. "Assimilation of SMAP disaggregated soil moisture and Landsat land surface temperature to improve FAO-56 estimates of ET in semi-arid regions," Agricultural Water Management, Elsevier, vol. 260(C).
    4. Darouich, Hanaa & Karfoul, Razan & Ramos, Tiago B. & Moustafa, Ali & Shaheen, Baraa & Pereira, Luis S., 2021. "Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region," Agricultural Water Management, Elsevier, vol. 255(C).
    5. Nakabuye, Hope Njuki & Rudnick, Daran & DeJonge, Kendall C. & Lo, Tsz Him & Heeren, Derek & Qiao, Xin & Franz, Trenton E. & Katimbo, Abia & Duan, Jiaming, 2022. "Real-time irrigation scheduling of maize using Degrees Above Non-Stressed (DANS) index in semi-arid environment," Agricultural Water Management, Elsevier, vol. 274(C).
    6. Liu, Meihan & Paredes, Paula & Shi, Haibin & Ramos, Tiago B. & Dou, Xu & Dai, Liping & Pereira, Luis S., 2022. "Impacts of a shallow saline water table on maize evapotranspiration and groundwater contribution using static water table lysimeters and the dual Kc water balance model SIMDualKc," Agricultural Water Management, Elsevier, vol. 273(C).
    7. Shao, Guomin & Han, Wenting & Zhang, Huihui & Liu, Shouyang & Wang, Yi & Zhang, Liyuan & Cui, Xin, 2021. "Mapping maize crop coefficient Kc using random forest algorithm based on leaf area index and UAV-based multispectral vegetation indices," Agricultural Water Management, Elsevier, vol. 252(C).
    8. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    9. Katimbo, Abia & Rudnick, Daran R. & DeJonge, Kendall C. & Lo, Tsz Him & Qiao, Xin & Franz, Trenton E. & Nakabuye, Hope Njuki & Duan, Jiaming, 2022. "Crop water stress index computation approaches and their sensitivity to soil water dynamics," Agricultural Water Management, Elsevier, vol. 266(C).
    10. Li, Cheng & Luo, Xiaoqi & Wang, Naijiang & Wu, Wenjie & Li, Yue & Quan, Hao & Zhang, Tibin & Ding, Dianyuan & Dong, Qin’ge & Feng, Hao, 2022. "Transparent plastic film combined with deficit irrigation improves hydrothermal status of the soil-crop system and spring maize growth in arid areas," Agricultural Water Management, Elsevier, vol. 265(C).
    11. Katimbo, Abia & Rudnick, Daran R. & Liang, Wei-zhen & DeJonge, Kendall C. & Lo, Tsz Him & Franz, Trenton E. & Ge, Yufeng & Qiao, Xin & Kabenge, Isa & Nakabuye, Hope Njuki & Duan, Jiaming, 2022. "Two source energy balance maize evapotranspiration estimates using close-canopy mobile infrared sensors and upscaling methods under variable water stress conditions," Agricultural Water Management, Elsevier, vol. 274(C).
    12. Ramos, Tiago B. & Oliveira, Ana R. & Darouich, Hanaa & Gonçalves, Maria C. & Martínez-Moreno, Francisco J. & Rodríguez, Mario Ramos & Vanderlinden, Karl & Farzamian, Mohammad, 2023. "Field-scale assessment of soil water dynamics using distributed modeling and electromagnetic conductivity imaging," Agricultural Water Management, Elsevier, vol. 288(C).
    13. Ezenne, G.I. & Jupp, Louise & Mantel, S.K. & Tanner, J.L., 2019. "Current and potential capabilities of UAS for crop water productivity in precision agriculture," Agricultural Water Management, Elsevier, vol. 218(C), pages 158-164.
    14. Bretreger, David & Yeo, In-Young & Hancock, Greg, 2022. "Quantifying irrigation water use with remote sensing: Soil water deficit modelling with uncertain soil parameters," Agricultural Water Management, Elsevier, vol. 260(C).
    15. Bhatti, Sandeep & Heeren, Derek M. & Evett, Steven R. & O’Shaughnessy, Susan A. & Rudnick, Daran R. & Franz, Trenton E. & Ge, Yufeng & Neale, Christopher M.U., 2022. "Crop response to thermal stress without yield loss in irrigated maize and soybean in Nebraska," Agricultural Water Management, Elsevier, vol. 274(C).
    16. Wu, Yinshan & Jiang, Jie & Zhang, Xiufeng & Zhang, Jiayi & Cao, Qiang & Tian, Yongchao & Zhu, Yan & Cao, Weixing & Liu, Xiaojun, 2023. "Combining machine learning algorithm and multi-temporal temperature indices to estimate the water status of rice," Agricultural Water Management, Elsevier, vol. 289(C).
    17. Ramos, Tiago B. & Darouich, Hanaa & Oliveira, Ana R. & Farzamian, Mohammad & Monteiro, Tomás & Castanheira, Nádia & Paz, Ana & Gonçalves, Maria C. & Pereira, Luís S., 2023. "Water use and soil water balance of Mediterranean tree crops assessed with the SIMDualKc model in orchards of southern Portugal," Agricultural Water Management, Elsevier, vol. 279(C).
    18. Pereira, L.S. & Paredes, P. & López-Urrea, R. & Hunsaker, D.J. & Mota, M. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for vegetable crops, an update of FAO56 crop water requirements approach," Agricultural Water Management, Elsevier, vol. 243(C).
    19. Rallo, G. & Paço, T.A. & Paredes, P. & Puig-Sirera, À. & Massai, R. & Provenzano, G. & Pereira, L.S., 2021. "Updated single and dual crop coefficients for tree and vine fruit crops," Agricultural Water Management, Elsevier, vol. 250(C).
    20. Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:299:y:2024:i:c:s0378377424002269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.