IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v178y2016icp215-224.html
   My bibliography  Save this article

Assessment of groundwater salinity risk using kriging methods: A case study in northern Iran

Author

Listed:
  • Ashrafzadeh, Afshin
  • Roshandel, Fateme
  • Khaledian, Mohammadreza
  • Vazifedoust, Majid
  • Rezaei, Mojtaba

Abstract

The suitability of groundwater for paddy field irrigation in the alluvial plains of Guilan Province, northern Iran, was investigated using ordinary kriging and ordinary cokriging of continuous and indicator quality variables. The cross validation values of error measures showed that ordinary cokriging provides more accurate estimates of the quality variables of interest. Maps showing the spatial variability of electrical conductivity (EC) and sum of major cations and anions (SCA) were generated for the years 2010 through 2014, using ordinary cokriging. Based on the estimated values of EC and SCA, four groundwater salinity classes (excellent, good, risky, and unsuitable) were considered and the proportion of the study area covered by each class was obtained. Results showed that the portion of the study area covered by the risky class, in which the groundwater salinity is expected to reduce the rice yield, is located in the eastern part of the study area and has an average value of 25.4% in the period 2010–2014. The results also showed that the western part of the study area has excellent or good groundwater quality for rice irrigation. The probability maps of EC were also obtained using ordinary cokriging of EC indicator variable. Five probability classes were considered and the proportion of the study area covered by each class was obtained. It was observed that the probability that the rice yield is reduced more than 10% is above 0.4 in 6.2% of the study area. The maps generated in this study can be used to identify the regions in the province where groundwater could be allowed to be extracted and utilized by farmers to reduce the bad effects of the scarcity of surface water. Also, in the regions with a risk of rice yield reduction, conjunctive use of groundwater and surface water could be planned and advised to farmers.

Suggested Citation

  • Ashrafzadeh, Afshin & Roshandel, Fateme & Khaledian, Mohammadreza & Vazifedoust, Majid & Rezaei, Mojtaba, 2016. "Assessment of groundwater salinity risk using kriging methods: A case study in northern Iran," Agricultural Water Management, Elsevier, vol. 178(C), pages 215-224.
  • Handle: RePEc:eee:agiwat:v:178:y:2016:i:c:p:215-224
    DOI: 10.1016/j.agwat.2016.09.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377416303845
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2016.09.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aadil Nabi & Adrian H. Gallardo & Shakeel Ahmed, 2011. "Optimization of a Groundwater Monitoring Network for a Sustainable Development of the Maheshwaram Catchment, India," Sustainability, MDPI, vol. 3(2), pages 1-14, February.
    2. Purna Nayak & Y. Rao & K. Sudheer, 2006. "Groundwater Level Forecasting in a Shallow Aquifer Using Artificial Neural Network Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(1), pages 77-90, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vahid Habibi & Hasan Ahmadi & Mohammad Jafari & Abolfazl Moeini, 2019. "Application of nonlinear models and groundwater index to predict desertification case study: Sharifabad watershed," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 715-733, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ioannis Trichakis & Ioannis Nikolos & G. Karatzas, 2011. "Artificial Neural Network (ANN) Based Modeling for Karstic Groundwater Level Simulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(4), pages 1143-1152, March.
    2. S. Mohanty & Madan Jha & S. Raul & R. Panda & K. Sudheer, 2015. "Using Artificial Neural Network Approach for Simultaneous Forecasting of Weekly Groundwater Levels at Multiple Sites," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5521-5532, December.
    3. Raymond Kim & Daniel Loucks & Jery Stedinger, 2012. "Artificial Neural Network Models of Watershed Nutrient Loading," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(10), pages 2781-2797, August.
    4. Hamid Safavi & Mahdieh Esmikhani, 2013. "Conjunctive Use of Surface Water and Groundwater: Application of Support Vector Machines (SVMs) and Genetic Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2623-2644, May.
    5. A. Izady & K. Davary & A. Alizadeh & A. Moghaddam Nia & A. Ziaei & S. Hasheminia, 2013. "Application of NN-ARX Model to Predict Groundwater Levels in the Neishaboor Plain, Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(14), pages 4773-4794, November.
    6. Ozgur Kisi & Meysam Alizamir & Mohammad Zounemat-Kermani, 2017. "Modeling groundwater fluctuations by three different evolutionary neural network techniques using hydroclimatic data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 367-381, May.
    7. Rakesh Kumar & Narendra Goel & Chandranath Chatterjee & Purna Nayak, 2015. "Regional Flood Frequency Analysis using Soft Computing Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1965-1978, April.
    8. Brédy, Jhemson & Gallichand, Jacques & Celicourt, Paul & Gumiere, Silvio José, 2020. "Water table depth forecasting in cranberry fields using two decision-tree-modeling approaches," Agricultural Water Management, Elsevier, vol. 233(C).
    9. Fawen Li & Jiale Qiao & Yong Zhao & Wei Zhang, 2014. "Risk Assessment of Groundwater and its Application. Part II: Using a Groundwater Risk Maps to Determine Control Levels of the Groundwater," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4875-4893, October.
    10. Afshin Khoshand, 2021. "Application of artificial intelligence in groundwater ecosystem protection: a case study of Semnan/Sorkheh plain, Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16617-16631, November.
    11. Zhenfang He & Yaonan Zhang & Qingchun Guo & Xueru Zhao, 2014. "Comparative Study of Artificial Neural Networks and Wavelet Artificial Neural Networks for Groundwater Depth Data Forecasting with Various Curve Fractal Dimensions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5297-5317, December.
    12. Seyed Ahmad Soleymani & Shidrokh Goudarzi & Mohammad Hossein Anisi & Wan Haslina Hassan & Mohd Yamani Idna Idris & Shahaboddin Shamshirband & Noorzaily Mohamed Noor & Ismail Ahmedy, 2016. "A Novel Method to Water Level Prediction using RBF and FFA," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3265-3283, July.
    13. Rabin Chakrabortty & Subodh Chandra Pal & Saeid Janizadeh & M. Santosh & Paramita Roy & Indrajit Chowdhuri & Asish Saha, 2021. "Impact of Climate Change on Future Flood Susceptibility: an Evaluation Based on Deep Learning Algorithms and GCM Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4251-4274, September.
    14. Tahoora Sheikhy Narany & Mohammad Ramli & Kazem Fakharian & Ahmad Aris & Wan Sulaiman, 2015. "Multi-Objective Based Approach for Groundwater Quality Monitoring Network Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5141-5156, November.
    15. Sheelabhadra Mohanty & Madan Jha & Ashwani Kumar & K. Sudheer, 2010. "Artificial Neural Network Modeling for Groundwater Level Forecasting in a River Island of Eastern India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(9), pages 1845-1865, July.
    16. Zhang, Meijing & Migliaccio, Kati W. & Her, Young Gu & Schaffer, Bruce, 2019. "A simulation model for estimating root zone saturation indices of agricultural crops in a shallow aquifer and canal system," Agricultural Water Management, Elsevier, vol. 220(C), pages 36-49.
    17. Sarvin Zamanzad-Ghavidel & Sina Fazeli & Sevda Mozaffari & Reza Sobhani & Mohammad Azamathulla Hazi & Alireza Emadi, 2023. "Estimating of aqueduct water withdrawal via a wavelet-hybrid soft-computing approach under uniform and non-uniform climatic conditions," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(6), pages 5283-5314, June.
    18. Veith Becker & Anssi Myrttinen & Johannes A.C. Barth & Peter Bayer, 2011. "A Summary on the Special Issue “Sustainability of Groundwater”," Sustainability, MDPI, vol. 3(10), pages 1-4, October.
    19. George P. Karatzas, 2017. "Developments on Modeling of Groundwater Flow and Contaminant Transport," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3235-3244, August.
    20. Chattopadhyay, Pallavi Banerjee & Rangarajan, R., 2014. "Application of ANN in sketching spatial nonlinearity of unconfined aquifer in agricultural basin," Agricultural Water Management, Elsevier, vol. 133(C), pages 81-91.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:178:y:2016:i:c:p:215-224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.