IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v22y2020i4d10.1007_s10668-019-00319-2.html
   My bibliography  Save this article

Use of neural networks and spatial interpolation to predict groundwater quality

Author

Listed:
  • Sunayana

    (CSIR-NEERI)

  • Komal Kalawapudi

    (CSIR-NEERI)

  • Ojaswikrishna Dube

    (CSIR-NEERI)

  • Renuka Sharma

    (L&T STEC JV)

Abstract

The artificial neural networks share its working analogous with the human brain; and by using these artificial neural models, various complex nonlinear relationships can be modeled which cannot be described easily using mathematical equations. In this study, groundwater quality at a sanitary landfill site used for solid waste disposal was modeled using artificial neural networks. The groundwater quality was assessed for two consecutive years 2016 and 2017 at ten locations near the site, and the data were used for modeling. Total hardness was predicted using neural networks by using three learning algorithms, and the best one was used in the final model for prediction. The interpolation maps were drawn for both the years to understand the total hardness concentrations at unsampled locations using ArcGIS Geostatistical Analyst Extension, and Inverse Distance Weighing method was used. The percentage effect of spatial and temporal changes on total hardness was calculated by doing the sensitivity analysis and thus finding the relative importance of each input parameter on total hardness. Different algorithms were tested to select the best-performing algorithm with optimal neural architecture.

Suggested Citation

  • Sunayana & Komal Kalawapudi & Ojaswikrishna Dube & Renuka Sharma, 2020. "Use of neural networks and spatial interpolation to predict groundwater quality," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(4), pages 2801-2816, April.
  • Handle: RePEc:spr:endesu:v:22:y:2020:i:4:d:10.1007_s10668-019-00319-2
    DOI: 10.1007/s10668-019-00319-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-019-00319-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-019-00319-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Purna Nayak & Y. Rao & K. Sudheer, 2006. "Groundwater Level Forecasting in a Shallow Aquifer Using Artificial Neural Network Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(1), pages 77-90, February.
    2. Sheelabhadra Mohanty & Madan Jha & Ashwani Kumar & K. Sudheer, 2010. "Artificial Neural Network Modeling for Groundwater Level Forecasting in a River Island of Eastern India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(9), pages 1845-1865, July.
    3. Mattei, F. & Franceschini, S. & Scardi, M., 2018. "A depth-resolved artificial neural network model of marine phytoplankton primary production," Ecological Modelling, Elsevier, vol. 382(C), pages 51-62.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Mohanty & Madan Jha & S. Raul & R. Panda & K. Sudheer, 2015. "Using Artificial Neural Network Approach for Simultaneous Forecasting of Weekly Groundwater Levels at Multiple Sites," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5521-5532, December.
    2. Raymond Kim & Daniel Loucks & Jery Stedinger, 2012. "Artificial Neural Network Models of Watershed Nutrient Loading," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(10), pages 2781-2797, August.
    3. Afshin Khoshand, 2021. "Application of artificial intelligence in groundwater ecosystem protection: a case study of Semnan/Sorkheh plain, Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16617-16631, November.
    4. Zhenfang He & Yaonan Zhang & Qingchun Guo & Xueru Zhao, 2014. "Comparative Study of Artificial Neural Networks and Wavelet Artificial Neural Networks for Groundwater Depth Data Forecasting with Various Curve Fractal Dimensions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5297-5317, December.
    5. Seyed Ahmad Soleymani & Shidrokh Goudarzi & Mohammad Hossein Anisi & Wan Haslina Hassan & Mohd Yamani Idna Idris & Shahaboddin Shamshirband & Noorzaily Mohamed Noor & Ismail Ahmedy, 2016. "A Novel Method to Water Level Prediction using RBF and FFA," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3265-3283, July.
    6. Sandra M. Guzman & Joel O. Paz & Mary Love M. Tagert, 2017. "The Use of NARX Neural Networks to Forecast Daily Groundwater Levels," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(5), pages 1591-1603, March.
    7. Gokmen Tayfur & Ata Nadiri & Asghar Moghaddam, 2014. "Supervised Intelligent Committee Machine Method for Hydraulic Conductivity Estimation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1173-1184, March.
    8. Thiago Victor Medeiros Nascimento & Celso Augusto Guimarães Santos & Camilo Allyson Simões Farias & Richarde Marques Silva, 2022. "Monthly Streamflow Modeling Based on Self-Organizing Maps and Satellite-Estimated Rainfall Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2359-2377, May.
    9. Safavi, Hamid R. & Enteshari, Sajad, 2016. "Conjunctive use of surface and ground water resources using the ant system optimization," Agricultural Water Management, Elsevier, vol. 173(C), pages 23-34.
    10. Sebastian Gutierrez Pacheco & Robert Lagacé & Sandrine Hugron & Stéphane Godbout & Line Rochefort, 2021. "Estimation of Daily Water Table Level with Bimonthly Measurements in Restored Ombrotrophic Peatland," Sustainability, MDPI, vol. 13(10), pages 1-21, May.
    11. Abdüsselam Altunkaynak, 2014. "Predicting Water Level Fluctuations in Lake Michigan-Huron Using Wavelet-Expert System Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(8), pages 2293-2314, June.
    12. Ioannis Trichakis & Ioannis Nikolos & G. Karatzas, 2011. "Artificial Neural Network (ANN) Based Modeling for Karstic Groundwater Level Simulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(4), pages 1143-1152, March.
    13. Kostić, Srđan & Stojković, Milan & Guranov, Iva & Vasović, Nebojša, 2019. "Revealing the background of groundwater level dynamics: Contributing factors, complex modeling and engineering applications," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 408-421.
    14. Kusum Pandey & Shiv Kumar & Anurag Malik & Alban Kuriqi, 2020. "Artificial Neural Network Optimized with a Genetic Algorithm for Seasonal Groundwater Table Depth Prediction in Uttar Pradesh, India," Sustainability, MDPI, vol. 12(21), pages 1-24, October.
    15. Dilip Kumar Roy & Sujit Kumar Biswas & Kowshik Kumar Saha & Khandakar Faisal Ibn Murad, 2021. "Groundwater Level Forecast Via a Discrete Space-State Modelling Approach as a Surrogate to Complex Groundwater Simulation Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1653-1672, April.
    16. Hamid Safavi & Mahdieh Esmikhani, 2013. "Conjunctive Use of Surface Water and Groundwater: Application of Support Vector Machines (SVMs) and Genetic Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2623-2644, May.
    17. A. Izady & K. Davary & A. Alizadeh & A. Moghaddam Nia & A. Ziaei & S. Hasheminia, 2013. "Application of NN-ARX Model to Predict Groundwater Levels in the Neishaboor Plain, Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(14), pages 4773-4794, November.
    18. Ozgur Kisi & Meysam Alizamir & Mohammad Zounemat-Kermani, 2017. "Modeling groundwater fluctuations by three different evolutionary neural network techniques using hydroclimatic data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 367-381, May.
    19. Rakesh Kumar & Narendra Goel & Chandranath Chatterjee & Purna Nayak, 2015. "Regional Flood Frequency Analysis using Soft Computing Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1965-1978, April.
    20. Brédy, Jhemson & Gallichand, Jacques & Celicourt, Paul & Gumiere, Silvio José, 2020. "Water table depth forecasting in cranberry fields using two decision-tree-modeling approaches," Agricultural Water Management, Elsevier, vol. 233(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:22:y:2020:i:4:d:10.1007_s10668-019-00319-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.