Application of nonlinear models and groundwater index to predict desertification case study: Sharifabad watershed
Author
Abstract
Suggested Citation
DOI: 10.1007/s11069-019-03769-z
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Karimi, Poolad & Qureshi, Asad Sarwar & Bahramloo, Reza & Molden, David, 2012. "Reducing carbon emissions through improved irrigation and groundwater management: A case study from Iran," Agricultural Water Management, Elsevier, vol. 108(C), pages 52-60.
- Sheelabhadra Mohanty & Madan Jha & Ashwani Kumar & K. Sudheer, 2010. "Artificial Neural Network Modeling for Groundwater Level Forecasting in a River Island of Eastern India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(9), pages 1845-1865, July.
- Ashrafzadeh, Afshin & Roshandel, Fateme & Khaledian, Mohammadreza & Vazifedoust, Majid & Rezaei, Mojtaba, 2016. "Assessment of groundwater salinity risk using kriging methods: A case study in northern Iran," Agricultural Water Management, Elsevier, vol. 178(C), pages 215-224.
- Hyonho Chun & Sündüz Keleş, 2010. "Sparse partial least squares regression for simultaneous dimension reduction and variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(1), pages 3-25, January.
- Guo Li & Xiaorong Zhou & Jianbing Liu & Yuanqi Chen & Hengtao Zhang & Yanyan Chen & Jianhua Liu & Hongbo Jiang & Junjing Yang & Shaofa Nie, 2018. "Comparison of three data mining models for prediction of advanced schistosomiasis prognosis in the Hubei province," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 12(2), pages 1-19, February.
- Samad Emamgholizadeh & Khadije Moslemi & Gholamhosein Karami, 2014. "Prediction the Groundwater Level of Bastam Plain (Iran) by Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5433-5446, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sandra M. Guzman & Joel O. Paz & Mary Love M. Tagert, 2017. "The Use of NARX Neural Networks to Forecast Daily Groundwater Levels," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(5), pages 1591-1603, March.
- Kostić, Srđan & Stojković, Milan & Guranov, Iva & Vasović, Nebojša, 2019. "Revealing the background of groundwater level dynamics: Contributing factors, complex modeling and engineering applications," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 408-421.
- S. Mohanty & Madan Jha & S. Raul & R. Panda & K. Sudheer, 2015. "Using Artificial Neural Network Approach for Simultaneous Forecasting of Weekly Groundwater Levels at Multiple Sites," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5521-5532, December.
- Dilip Kumar Roy & Sujit Kumar Biswas & Kowshik Kumar Saha & Khandakar Faisal Ibn Murad, 2021. "Groundwater Level Forecast Via a Discrete Space-State Modelling Approach as a Surrogate to Complex Groundwater Simulation Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1653-1672, April.
- Seyed Ahmad Soleymani & Shidrokh Goudarzi & Mohammad Hossein Anisi & Wan Haslina Hassan & Mohd Yamani Idna Idris & Shahaboddin Shamshirband & Noorzaily Mohamed Noor & Ismail Ahmedy, 2016. "A Novel Method to Water Level Prediction using RBF and FFA," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3265-3283, July.
- Adib Roshani & Mehdi Hamidi, 2022. "Groundwater Level Fluctuations in Coastal Aquifer: Using Artificial Neural Networks to Predict the Impacts of Climatical CMIP6 Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 3981-4001, September.
- Akram Seifi & Mohammad Ehteram & Vijay P. Singh & Amir Mosavi, 2020. "Modeling and Uncertainty Analysis of Groundwater Level Using Six Evolutionary Optimization Algorithms Hybridized with ANFIS, SVM, and ANN," Sustainability, MDPI, vol. 12(10), pages 1-42, May.
- Haijiao Yu & Xiaohu Wen & Qi Feng & Ravinesh C. Deo & Jianhua Si & Min Wu, 2018. "Comparative Study of Hybrid-Wavelet Artificial Intelligence Models for Monthly Groundwater Depth Forecasting in Extreme Arid Regions, Northwest China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 301-323, January.
- Julieta Fuentes & Pilar Poncela & Julio Rodríguez, 2015.
"Sparse Partial Least Squares in Time Series for Macroeconomic Forecasting,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 576-595, June.
- Fuentes, Julieta & Poncela, Pilar & Rodríguez, Julio, 2012. "Sparse partial least squares in time series for macroeconomic forecasting," DES - Working Papers. Statistics and Econometrics. WS ws122216, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Xianming Dou & Yongguo Yang & Jinhui Luo, 2018. "Estimating Forest Carbon Fluxes Using Machine Learning Techniques Based on Eddy Covariance Measurements," Sustainability, MDPI, vol. 10(1), pages 1-26, January.
- Golam Saleh Ahmed Salem & So Kazama & Shamsuddin Shahid & Nepal C. Dey, 2018. "Groundwater-dependent irrigation costs and benefits for adaptation to global change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(6), pages 953-979, August.
- Tommaso Proietti, 2016.
"On the Selection of Common Factors for Macroeconomic Forecasting,"
Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 593-628,
Emerald Group Publishing Limited.
- Alessandro Giovannelli & Tommaso Proietti, 2014. "On the Selection of Common Factors for Macroeconomic Forecasting," CREATES Research Papers 2014-46, Department of Economics and Business Economics, Aarhus University.
- Alessandro Giovannelli & Tommaso Proietti, 2015. "On the Selection of Common Factors for Macroeconomic Forecasting," CEIS Research Paper 332, Tor Vergata University, CEIS, revised 12 Mar 2015.
- Giovannelli, Alessandro & Proietti, Tommaso, 2014. "On the Selection of Common Factors for Macroeconomic Forecasting," MPRA Paper 60673, University Library of Munich, Germany.
- Akshita Bassi & Aditya Manchanda & Rajwinder Singh & Mahesh Patel, 2023. "A comparative study of machine learning algorithms for the prediction of compressive strength of rice husk ash-based concrete," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 209-238, August.
- Kawano, Shuichi & Fujisawa, Hironori & Takada, Toyoyuki & Shiroishi, Toshihiko, 2015. "Sparse principal component regression with adaptive loading," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 192-203.
- Debamita Kundu & Riten Mitra & Jeremy T. Gaskins, 2021. "Bayesian variable selection for multioutcome models through shared shrinkage," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 295-320, March.
- Zhang Yuping & Tibshirani Robert J. & Davis Ronald W., 2010. "Predicting Patient Survival from Longitudinal Gene Expression," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-23, November.
- Kamrani, Kazem & Roozbahani, Abbas & Hashemy Shahdany, Seied Mehdy, 2020. "Using Bayesian networks to evaluate how agricultural water distribution systems handle the water-food-energy nexus," Agricultural Water Management, Elsevier, vol. 239(C).
- Qiang Sun & Hongtu Zhu & Yufeng Liu & Joseph G. Ibrahim, 2015. "SPReM: Sparse Projection Regression Model For High-Dimensional Linear Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 289-302, March.
- Lankford, Bruce, 2012. "Fictions, fractions, factorials and fractures; on the framing of irrigation efficiency," Agricultural Water Management, Elsevier, vol. 108(C), pages 27-38.
- Mohammad Naderianfar & Jamshid Piri & Ozgur Kisi, 2017. "Pre-processing data to predict groundwater levels using the fuzzy standardized evapotranspiration and precipitation index (SEPI)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(14), pages 4433-4448, November.
More about this item
Keywords
Groundwater level; Partial least square regression (PLSR); Topographic wetness index (TWI); Artificial neural networks (ANN); Adaptive neuro-fuzzy inference system (ANFIS); Land degradation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:99:y:2019:i:2:d:10.1007_s11069-019-03769-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.