IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v176y2016icp280-296.html
   My bibliography  Save this article

Bayesian Belief Network analysis of soil salinity in a peri-urban agricultural field irrigated with recycled water

Author

Listed:
  • Rahman, Muhammad Muhitur
  • Hagare, Dharma
  • Maheshwari, Basant

Abstract

Continuous use of recycled water (treated wastewater) over a long period of time may lead to the accumulation of salt in the rootzone soil. This is due to the relatively higher levels of salt content in the recycled water compared to surface water. In this study, an assessment framework is proposed to evaluate the level of salinity in recycled water that can have significant impact on the rootzone salinity when recycled water is used for irrigating peri-urban agricultural paddocks. The framework is constructed with a probabilistic expert system, more specifically, Bayesian Belief Network (BBN). The BBN model analyses the salt accumulation process with quantifying uncertainty associated with various variables related to this process. The proposed BBN was first developed and tested with the results from laboratory batch study and continuous column study conducted over 264days. Later, a salt transport model HYDRUS 1D was used to quantify salt accumulation in the paddock over 20 years of study period, and the result was used to update the BBN to accommodate field condition. The salt transport modelling identified that in some year rootzone soil water electrical conductivity (ECSW in dS/m) was more than twice of the maximum threshold of salinity tolerance. The BBN was used to quantify the uncertainty associated with the reduction of salinity in terms of electrical conductivity in recycled water (ECrw in dS/m), which subsequently reduced the probability of exceeding the salt accumulation beyond the maximum threshold limit. It was found that, if ECrw can be reduced by 13% (from 0.92 to 0.8dS/m), there is around 49% probability that the ECSW would be reduced by around 39% (from 6.5dS/m to 4dS/m), and will keep it within the threshold salinity limit of 3.0–5.0dS/m 100% of the time. The study highlighted that any strategies that help in the reduction of salt in the recycled water will be beneficial in managing the soil salinity as a result of recycled water use for irrigating peri-urban agricultural field. The methodology presented in the study provides much needed knowledge for the development of robust and enlightened management strategies in relation to wastewater reuse.

Suggested Citation

  • Rahman, Muhammad Muhitur & Hagare, Dharma & Maheshwari, Basant, 2016. "Bayesian Belief Network analysis of soil salinity in a peri-urban agricultural field irrigated with recycled water," Agricultural Water Management, Elsevier, vol. 176(C), pages 280-296.
  • Handle: RePEc:eee:agiwat:v:176:y:2016:i:c:p:280-296
    DOI: 10.1016/j.agwat.2016.03.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377416300798
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2016.03.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pedrero, Francisco & Kalavrouziotis, Ioannis & Alarcón, Juan José & Koukoulakis, Prodromos & Asano, Takashi, 2010. "Use of treated municipal wastewater in irrigated agriculture--Review of some practices in Spain and Greece," Agricultural Water Management, Elsevier, vol. 97(9), pages 1233-1241, September.
    2. Aiello, Rosa & Cirelli, Giuseppe Luigi & Consoli, Simona, 2007. "Effects of reclaimed wastewater irrigation on soil and tomato fruits: A case study in Sicily (Italy)," Agricultural Water Management, Elsevier, vol. 93(1-2), pages 65-72, October.
    3. Corwin, Dennis L. & Rhoades, James D. & Simunek, Jirka, 2007. "Leaching requirement for soil salinity control: Steady-state versus transient models," Agricultural Water Management, Elsevier, vol. 90(3), pages 165-180, June.
    4. Batchelor, Charles & Cain, Jeremy, 1999. "Application of belief networks to water management studies," Agricultural Water Management, Elsevier, vol. 40(1), pages 51-57, March.
    5. Thayalakumaran, T. & Bethune, M.G. & McMahon, T.A., 2007. "Achieving a salt balance--Should it be a management objective?," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 1-12, August.
    6. Ben Brahim-Neji, Hella & Ruiz-Villaverde, Alberto & González-Gómez, Francisco, 2014. "Decision aid supports for evaluating agricultural water reuse practices in Tunisia: The Cebala perimeter," Agricultural Water Management, Elsevier, vol. 143(C), pages 113-121.
    7. Giordano, Raffaele & D’Agostino, Daniela & Apollonio, Ciro & Scardigno, Alessandra & Pagano, Alessandro & Portoghese, Ivan & Lamaddalena, Nicola & Piccinni, Alberto F. & Vurro, Michele, 2015. "Evaluating acceptability of groundwater protection measures under different agricultural policies," Agricultural Water Management, Elsevier, vol. 147(C), pages 54-66.
    8. Martin de Santa Olalla, F.J. & Dominguez, A. & Artigao, A. & Fabeiro, C. & Ortega, J.F., 2005. "Integrated water resources management of the Hydrogeological Unit "Eastern Mancha" using Bayesian Belief Networks," Agricultural Water Management, Elsevier, vol. 77(1-3), pages 21-36, August.
    9. Saravanan, V.S., 2010. "Negotiating participatory irrigation management in the Indian Himalayas," Agricultural Water Management, Elsevier, vol. 97(5), pages 651-658, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Parisa Noorbeh & Abbas Roozbahani & Hamid Kardan Moghaddam, 2020. "Annual and Monthly Dam Inflow Prediction Using Bayesian Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 2933-2951, July.
    2. Muhammad Muhitur Rahman & Md Kamrul Islam & Ammar Al-Shayeb & Md Arifuzzaman, 2022. "Towards Sustainable Road Safety in Saudi Arabia: Exploring Traffic Accident Causes Associated with Driving Behavior Using a Bayesian Belief Network," Sustainability, MDPI, vol. 14(10), pages 1-22, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cirelli, G.L. & Consoli, S. & Licciardello, F. & Aiello, R. & Giuffrida, F. & Leonardi, C., 2012. "Treated municipal wastewater reuse in vegetable production," Agricultural Water Management, Elsevier, vol. 104(C), pages 163-170.
    2. Oliver Maaß & Philipp Grundmann, 2018. "Governing Transactions and Interdependences between Linked Value Chains in a Circular Economy: The Case of Wastewater Reuse in Braunschweig (Germany)," Sustainability, MDPI, vol. 10(4), pages 1-29, April.
    3. Gatta, Giuseppe & Libutti, Angela & Gagliardi, Anna & Beneduce, Luciano & Brusetti, Lorenzo & Borruso, Luigimaria & Disciglio, Grazia & Tarantino, Emanuele, 2015. "Treated agro-industrial wastewater irrigation of tomato crop: Effects on qualitative/quantitative characteristics of production and microbiological properties of the soil," Agricultural Water Management, Elsevier, vol. 149(C), pages 33-43.
    4. Libutti, Angela & Gatta, Giuseppe & Gagliardi, Anna & Vergine, Pompilio & Pollice, Alfieri & Beneduce, Luciano & Disciglio, Grazia & Tarantino, Emanuele, 2018. "Agro-industrial wastewater reuse for irrigation of a vegetable crop succession under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 196(C), pages 1-14.
    5. Gao, Yang & Shao, Guangcheng & Wu, Shiqing & Xiaojun, Wang & Lu, Jia & Cui, Jintao, 2021. "Changes in soil salinity under treated wastewater irrigation: A meta-analysis," Agricultural Water Management, Elsevier, vol. 255(C).
    6. Gill, Bruce C. & Terry, Alister D., 2016. "‘Keeping salt on the farm’—Evaluation of an on-farm salinity management system in the Shepparton irrigation region of South-East Australia," Agricultural Water Management, Elsevier, vol. 164(P2), pages 291-303.
    7. Marofi, Safar & Shakarami, Masoud & Rahimi, Ghasem & Ershadfath, Farnaz, 2015. "Effect of wastewater and compost on leaching nutrients of soil column under basil cultivation," Agricultural Water Management, Elsevier, vol. 158(C), pages 266-276.
    8. Maaß, Oliver & Grundmann, Philipp, 2016. "Added-value from linking the value chains of wastewater treatment, crop production and bioenergy production: A case study on reusing wastewater and sludge in crop production in Braunschweig (Germany)," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 195-211.
    9. Carmelo Maucieri & Valeria Cavallaro & Caterina Caruso & Maurizio Borin & Mirco Milani & Antonio C. Barbera, 2016. "Sorghum Biomass Production for Energy Purpose Using Treated Urban Wastewater and Different Fertilization in a Mediterranean Environment," Agriculture, MDPI, vol. 6(4), pages 1-15, December.
    10. Wichelns, Dennis & Qadir, Manzoor, 2015. "Achieving sustainable irrigation requires effective management of salts, soil salinity, and shallow groundwater," Agricultural Water Management, Elsevier, vol. 157(C), pages 31-38.
    11. Demetrio Antonio Zema & Bruno Gianmarco Carrà & Agostino Sorgonà & Antonino Zumbo & Manuel Esteban Lucas-Borja & Isabel Miralles & Raúl Ortega & Rocío Soria & Santo Marcello Zimbone & Paolo Salvatore , 2023. "Sustainable Use of Treated Municipal Wastewater after Chlorination: Short-Term Effects on Crops and Soils," Sustainability, MDPI, vol. 15(15), pages 1-23, July.
    12. Odone, Giordano & Perulli, Giulio Demetrio & Mancuso, Giuseppe & Lavrnić, Stevo & Toscano, Attilio, 2024. "A novel smart fertigation system for irrigation with treated wastewater: Effects on nutrient recovery, crop and soil," Agricultural Water Management, Elsevier, vol. 297(C).
    13. Kragt, Marit Ellen & Bennett, Jeffrey W., 2009. "Integrated Hydro-Economic Modelling: Challenges and Experiences in an Australian Catchment," Research Reports 94815, Australian National University, Environmental Economics Research Hub.
    14. Al-Absi, K.M. & Al-Nasir, F.M. & Mahadeen, A.Y., 2009. "Mineral content of three olive cultivars irrigated with treated industrial wastewater," Agricultural Water Management, Elsevier, vol. 96(4), pages 616-626, April.
    15. Azunre, Gideon Abagna & Amponsah, Owusu & Takyi, Stephen Appiah & Mensah, Henry & Braimah, Imoro, 2022. "Urban informalities in sub-Saharan Africa (SSA): A solution for or barrier against sustainable city development," World Development, Elsevier, vol. 152(C).
    16. Pedrero, Francisco & Grattan, S.R. & Ben-Gal, Alon & Vivaldi, Gaetano Alessandro, 2020. "Opportunities for expanding the use of wastewaters for irrigation of olives," Agricultural Water Management, Elsevier, vol. 241(C).
    17. Barros, R. & Isidoro, D. & Aragüés, R., 2011. "Long-term water balances in La Violada irrigation district (Spain): I. Sequential assessment and minimization of closing errors," Agricultural Water Management, Elsevier, vol. 102(1), pages 35-45.
    18. Abrahao, R. & Causapé, J. & García-Garizábal, I. & Merchán, D., 2011. "Implementing irrigation: Salt and nitrate exported from the Lerma basin (Spain)," Agricultural Water Management, Elsevier, vol. 102(1), pages 105-112.
    19. Ejovi Akpojevwe Abafe & Yonas T. Bahta & Henry Jordaan, 2022. "Exploring Biblioshiny for Historical Assessment of Global Research on Sustainable Use of Water in Agriculture," Sustainability, MDPI, vol. 14(17), pages 1-34, August.
    20. Rosa, R.D. & Ramos, T.B. & Pereira, L.S., 2016. "The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 177(C), pages 77-94.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:176:y:2016:i:c:p:280-296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.