IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v158y2015icp266-276.html
   My bibliography  Save this article

Effect of wastewater and compost on leaching nutrients of soil column under basil cultivation

Author

Listed:
  • Marofi, Safar
  • Shakarami, Masoud
  • Rahimi, Ghasem
  • Ershadfath, Farnaz

Abstract

This study was conducted to determine the effects of wastewater and compost on soil leaching nutrients, under basil cultivation. To this regard, a factorial test based on completely randomized design with two factors and three replications was applied. The experiment was carried out in the greenhouse of Bu-Ali Sina University, Hamedan, Iran. The first factor was water quality: fresh water (W1), raw wastewater (W2) and treated wastewater (W3) the second factor was compost level: 0 (C1), 40 (C2), 80 (C3) and 120tha−1 (C4). Therefore, 12 treatments (W1C1–W3C4) were investigated. 36 cubic (30cm×30cm×126cm) metal lysimeters were designed. Lysimeters contained a three-layer soil (from top to bottom) including: 30 (clay), 40 (clay loam) and 40cm (sandy loam), respectively. After lysimeters preparing, basil was planted in the top soil. Eleven watering with an average interval of 10 days were used during planting season. Nitrate, phosphate and potassium of leaching water were analyzed after each watering. Also, the basil yield and nutrients were analyzed in three harvesting stages. The result showed wastewater and compost could increase all leached nutrients comparing to the control. In all treatments, cumulative concentrated nitrate, phosphate and potassium in soil profile ranged from 36.13 to 142.05, 0.33 to 1.05 and 57.6 to 125.34mg/l, respectively. The minimum and maximum amounts of nitrate, phosphate and potassium in drainage water were 2.56 and 21.40, 0.01 and 0.16 and 1.04 and 16.35mg/l, respectively. Also, using wastewater and compost increased the basil yield and nutrients. In most of treatments, nitrate concentrations were greater than the standard rate allowed for human consumption. Based on the result, potential for nitrate, phosphate and potassium leaching from wastewater and compost amended could be reduced by establishing a plant cover.

Suggested Citation

  • Marofi, Safar & Shakarami, Masoud & Rahimi, Ghasem & Ershadfath, Farnaz, 2015. "Effect of wastewater and compost on leaching nutrients of soil column under basil cultivation," Agricultural Water Management, Elsevier, vol. 158(C), pages 266-276.
  • Handle: RePEc:eee:agiwat:v:158:y:2015:i:c:p:266-276
    DOI: 10.1016/j.agwat.2015.05.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377415001602
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2015.05.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pedrero, Francisco & Kalavrouziotis, Ioannis & Alarcón, Juan José & Koukoulakis, Prodromos & Asano, Takashi, 2010. "Use of treated municipal wastewater in irrigated agriculture--Review of some practices in Spain and Greece," Agricultural Water Management, Elsevier, vol. 97(9), pages 1233-1241, September.
    2. Aiello, Rosa & Cirelli, Giuseppe Luigi & Consoli, Simona, 2007. "Effects of reclaimed wastewater irrigation on soil and tomato fruits: A case study in Sicily (Italy)," Agricultural Water Management, Elsevier, vol. 93(1-2), pages 65-72, October.
    3. Heidarpour, M. & Mostafazadeh-Fard, B. & Abedi Koupai, J. & Malekian, R., 2007. "The effects of treated wastewater on soil chemical properties using subsurface and surface irrigation methods," Agricultural Water Management, Elsevier, vol. 90(1-2), pages 87-94, May.
    4. Francaviglia, R. & Capri, E., 2000. "Lysimeter experiments with metolachlor in Tor Mancina (Italy)," Agricultural Water Management, Elsevier, vol. 44(1-3), pages 63-74, May.
    5. Al-Nakshabandi, G. A. & Saqqar, M. M. & Shatanawi, M. R. & Fayyad, M. & Al-Horani, H., 1997. "Some environmental problems associated with the use of treated wastewater for irrigation in Jordan," Agricultural Water Management, Elsevier, vol. 34(1), pages 81-94, July.
    6. Kalavrouziotis, I.K. & Robolas, P. & Koukoulakis, P.H. & Papadopoulos, A.H., 2008. "Effects of municipal reclaimed wastewater on the macro- and micro-elements status of soil and of Brassica oleracea var. Italica, and B. oleracea var. Gemmifera," Agricultural Water Management, Elsevier, vol. 95(4), pages 419-426, April.
    7. Jalali, M. & Merikhpour, H. & Kaledhonkar, M.J. & Van Der Zee, S.E.A.T.M., 2008. "Effects of wastewater irrigation on soil sodicity and nutrient leaching in calcareous soils," Agricultural Water Management, Elsevier, vol. 95(2), pages 143-153, February.
    8. Kiziloglu, F.M. & Turan, M. & Sahin, U. & Kuslu, Y. & Dursun, A., 2008. "Effects of untreated and treated wastewater irrigation on some chemical properties of cauliflower (Brassica olerecea L. var. botrytis) and red cabbage (Brassica olerecea L. var. rubra) grown on calcar," Agricultural Water Management, Elsevier, vol. 95(6), pages 716-724, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pereira, B.F.F. & He, Z.L. & Stoffella, P.J. & Melfi, A.J., 2011. "Reclaimed wastewater: Effects on citrus nutrition," Agricultural Water Management, Elsevier, vol. 98(12), pages 1828-1833, October.
    2. Libutti, Angela & Gatta, Giuseppe & Gagliardi, Anna & Vergine, Pompilio & Pollice, Alfieri & Beneduce, Luciano & Disciglio, Grazia & Tarantino, Emanuele, 2018. "Agro-industrial wastewater reuse for irrigation of a vegetable crop succession under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 196(C), pages 1-14.
    3. Zema, Demetrio Antonio & Bombino, Giuseppe & Andiloro, Serafina & Zimbone, Santo Marcello, 2012. "Irrigation of energy crops with urban wastewater: Effects on biomass yields, soils and heating values," Agricultural Water Management, Elsevier, vol. 115(C), pages 55-65.
    4. Maestre-Valero, J.F. & Gonzalez-Ortega, M.J. & Martinez-Alvarez, V. & Gallego-Elvira, B. & Conesa-Jodar, F.J. & Martin-Gorriz, B., 2019. "Revaluing the nutrition potential of reclaimed water for irrigation in southeastern Spain," Agricultural Water Management, Elsevier, vol. 218(C), pages 174-181.
    5. Cirelli, G.L. & Consoli, S. & Licciardello, F. & Aiello, R. & Giuffrida, F. & Leonardi, C., 2012. "Treated municipal wastewater reuse in vegetable production," Agricultural Water Management, Elsevier, vol. 104(C), pages 163-170.
    6. Oliver Maaß & Philipp Grundmann, 2018. "Governing Transactions and Interdependences between Linked Value Chains in a Circular Economy: The Case of Wastewater Reuse in Braunschweig (Germany)," Sustainability, MDPI, vol. 10(4), pages 1-29, April.
    7. Cakmakci, Talip & Sahin, Ustun, 2021. "Improving silage maize productivity using recycled wastewater under different irrigation methods," Agricultural Water Management, Elsevier, vol. 255(C).
    8. Bame, I.B. & Hughes, J.C. & Titshall, L.W. & Buckley, C.A., 2014. "The effect of irrigation with anaerobic baffled reactor effluent on nutrient availability, soil properties and maize growth," Agricultural Water Management, Elsevier, vol. 134(C), pages 50-59.
    9. Blum, Julius & Herpin, Uwe & Melfi, Adolpho José & Montes, Célia Regina, 2012. "Soil properties in a sugarcane plantation after the application of treated sewage effluent and phosphogypsum in Brazil," Agricultural Water Management, Elsevier, vol. 115(C), pages 203-216.
    10. Nikolaos Tzortzakis & Christos Saridakis & Antonios Chrysargyris, 2020. "Treated Wastewater and Fertigation Applied for Greenhouse Tomato Cultivation Grown in Municipal Solid Waste Compost and Soil Mixtures," Sustainability, MDPI, vol. 12(10), pages 1-21, May.
    11. Gatta, Giuseppe & Libutti, Angela & Gagliardi, Anna & Beneduce, Luciano & Brusetti, Lorenzo & Borruso, Luigimaria & Disciglio, Grazia & Tarantino, Emanuele, 2015. "Treated agro-industrial wastewater irrigation of tomato crop: Effects on qualitative/quantitative characteristics of production and microbiological properties of the soil," Agricultural Water Management, Elsevier, vol. 149(C), pages 33-43.
    12. Petousi, I. & Fountoulakis, M.S. & Saru, M.L. & Nikolaidis, N. & Fletcher, L. & Stentiford, E.I. & Manios, T., 2015. "Effects of reclaimed wastewater irrigation on olive (Olea europaea L. cv. ‘Koroneiki’) trees," Agricultural Water Management, Elsevier, vol. 160(C), pages 33-40.
    13. Gao, Yang & Shao, Guangcheng & Wu, Shiqing & Xiaojun, Wang & Lu, Jia & Cui, Jintao, 2021. "Changes in soil salinity under treated wastewater irrigation: A meta-analysis," Agricultural Water Management, Elsevier, vol. 255(C).
    14. Maaß, Oliver & Grundmann, Philipp, 2016. "Added-value from linking the value chains of wastewater treatment, crop production and bioenergy production: A case study on reusing wastewater and sludge in crop production in Braunschweig (Germany)," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 195-211.
    15. Carmelo Maucieri & Valeria Cavallaro & Caterina Caruso & Maurizio Borin & Mirco Milani & Antonio C. Barbera, 2016. "Sorghum Biomass Production for Energy Purpose Using Treated Urban Wastewater and Different Fertilization in a Mediterranean Environment," Agriculture, MDPI, vol. 6(4), pages 1-15, December.
    16. Liang, Qiong & Gao, Rutai & Xi, Beidou & Zhang, Yuan & Zhang, Hui, 2014. "Long-term effects of irrigation using water from the river receiving treated industrial wastewater on soil organic carbon fractions and enzyme activities," Agricultural Water Management, Elsevier, vol. 135(C), pages 100-108.
    17. Rahman, Muhammad Muhitur & Hagare, Dharma & Maheshwari, Basant, 2016. "Bayesian Belief Network analysis of soil salinity in a peri-urban agricultural field irrigated with recycled water," Agricultural Water Management, Elsevier, vol. 176(C), pages 280-296.
    18. Demetrio Antonio Zema & Bruno Gianmarco Carrà & Agostino Sorgonà & Antonino Zumbo & Manuel Esteban Lucas-Borja & Isabel Miralles & Raúl Ortega & Rocío Soria & Santo Marcello Zimbone & Paolo Salvatore , 2023. "Sustainable Use of Treated Municipal Wastewater after Chlorination: Short-Term Effects on Crops and Soils," Sustainability, MDPI, vol. 15(15), pages 1-23, July.
    19. Odone, Giordano & Perulli, Giulio Demetrio & Mancuso, Giuseppe & Lavrnić, Stevo & Toscano, Attilio, 2024. "A novel smart fertigation system for irrigation with treated wastewater: Effects on nutrient recovery, crop and soil," Agricultural Water Management, Elsevier, vol. 297(C).
    20. Mkhinini, Marouane & Boughattas, Iteb & Alphonse, Vanessa & Livet, Alexandre & Gıustı-Mıller, Stéphanie & Bannı, Mohamed & Bousserrhıne, Noureddine, 2020. "Heavy metal accumulation and changes in soil enzymes activities and bacterial functional diversity under long-term treated wastewater irrigation in East Central region of Tunisia (Monastir governorate," Agricultural Water Management, Elsevier, vol. 235(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:158:y:2015:i:c:p:266-276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.