IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v135y2014icp100-108.html
   My bibliography  Save this article

Long-term effects of irrigation using water from the river receiving treated industrial wastewater on soil organic carbon fractions and enzyme activities

Author

Listed:
  • Liang, Qiong
  • Gao, Rutai
  • Xi, Beidou
  • Zhang, Yuan
  • Zhang, Hui

Abstract

Reuse of wastewater for agricultural irrigation is one of the useful managements to alleviate the shortage of water resources in arid and semi-arid regions in China. Industrial wastewater from the city of Shijiazhuang is discharged into Wangyang River after treatment. The water is used downstream to irrigate agricultural soils. The objective of this study was to investigate how almost 20 years of irrigation with water from the Wangyang River affected soil characteristics, labile soil organic C and soil enzyme activities, and to compare the microbial response to the long-term irrigation in different locations alongside the river. The results showed that long-term irrigation with river water has resulted in accumulation of Hg, Cd, As, Pb, Cu, Cr, Zn and Mn in the downstream soils. In comparison with groundwater irrigated soils, long-term irrigation with river water significantly increased dissolved organic carbon (DOC), microbial biomass carbon (MBC) and permanganate oxidizable C (KMnO4-C) contents, and dehydrogenase, β-glucosidase, urease, alkaline phosphatase and arylsulphatase activities in the upstream and midstream soils (P<0.05), but not in the downstream soils. On the contrary, the enzyme activities in the downstream soils were significantly decreased after 20 years of river water irrigation (P<0.05). A significant negative correlation (P<0.01) was observed between enzyme activities and concentrations of heavy metals in the soils irrigated with river water, suggesting the inhibition of microbial activity caused by accumulated heavy metals, especially in the downstream soil. The effects of irrigation with water from the wastewater-receiving river on soil quality depends not only on the properties and components of irrigation water, but also on the soil characteristics such as soil type, nutrient conditions and concentrations of heavy metals.

Suggested Citation

  • Liang, Qiong & Gao, Rutai & Xi, Beidou & Zhang, Yuan & Zhang, Hui, 2014. "Long-term effects of irrigation using water from the river receiving treated industrial wastewater on soil organic carbon fractions and enzyme activities," Agricultural Water Management, Elsevier, vol. 135(C), pages 100-108.
  • Handle: RePEc:eee:agiwat:v:135:y:2014:i:c:p:100-108
    DOI: 10.1016/j.agwat.2014.01.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377414000079
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2014.01.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pedrero, Francisco & Kalavrouziotis, Ioannis & Alarcón, Juan José & Koukoulakis, Prodromos & Asano, Takashi, 2010. "Use of treated municipal wastewater in irrigated agriculture--Review of some practices in Spain and Greece," Agricultural Water Management, Elsevier, vol. 97(9), pages 1233-1241, September.
    2. Nava Haruvy & Ram Offer & Amos Hadas & Israela Ravina, 1999. "Wastewater Irrigation-Economic Concerns Regarding Beneficiary and Hazardous Effects of Nutrients," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 13(5), pages 303-314, October.
    3. Al-Lahham, O. & El Assi, N. M. & Fayyad, M., 2003. "Impact of treated wastewater irrigation on quality attributes and contamination of tomato fruit," Agricultural Water Management, Elsevier, vol. 61(1), pages 51-62, June.
    4. Kiziloglu, F.M. & Turan, M. & Sahin, U. & Kuslu, Y. & Dursun, A., 2008. "Effects of untreated and treated wastewater irrigation on some chemical properties of cauliflower (Brassica olerecea L. var. botrytis) and red cabbage (Brassica olerecea L. var. rubra) grown on calcar," Agricultural Water Management, Elsevier, vol. 95(6), pages 716-724, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tianxin Li & Linglong Meng & Uwizeyimana Herman & Zhongming Lu & John Crittenden, 2015. "A Survey of Soil Enzyme Activities along Major Roads in Beijing: The Implications for Traffic Corridor Green Space Management," IJERPH, MDPI, vol. 12(10), pages 1-14, October.
    2. Sang-Hwan Lee & Min-Suk Kim & Jeong-Gyu Kim & Soon-Oh Kim, 2020. "Use of Soil Enzymes as Indicators for Contaminated Soil Monitoring and Sustainable Management," Sustainability, MDPI, vol. 12(19), pages 1-14, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikolaos Tzortzakis & Christos Saridakis & Antonios Chrysargyris, 2020. "Treated Wastewater and Fertigation Applied for Greenhouse Tomato Cultivation Grown in Municipal Solid Waste Compost and Soil Mixtures," Sustainability, MDPI, vol. 12(10), pages 1-21, May.
    2. Mahmoud S. Hashem & Wei Guo & Xuebin Qi & Ping Li, 2022. "Assessing the Effect of Irrigation with Reclaimed Water Using Different Irrigation Techniques on Tomatoes Quality Parameters," Sustainability, MDPI, vol. 14(5), pages 1-19, March.
    3. Marofi, Safar & Shakarami, Masoud & Rahimi, Ghasem & Ershadfath, Farnaz, 2015. "Effect of wastewater and compost on leaching nutrients of soil column under basil cultivation," Agricultural Water Management, Elsevier, vol. 158(C), pages 266-276.
    4. Elfanssi, Saloua & Ouazzani, Naaila & Mandi, Laila, 2018. "Soil properties and agro-physiological responses of alfalfa (Medicago sativa L.) irrigated by treated domestic wastewater," Agricultural Water Management, Elsevier, vol. 202(C), pages 231-240.
    5. Cakmakci, Talip & Sahin, Ustun, 2021. "Improving silage maize productivity using recycled wastewater under different irrigation methods," Agricultural Water Management, Elsevier, vol. 255(C).
    6. Pereira, B.F.F. & He, Z.L. & Stoffella, P.J. & Melfi, A.J., 2011. "Reclaimed wastewater: Effects on citrus nutrition," Agricultural Water Management, Elsevier, vol. 98(12), pages 1828-1833, October.
    7. Gatta, Giuseppe & Libutti, Angela & Gagliardi, Anna & Beneduce, Luciano & Brusetti, Lorenzo & Borruso, Luigimaria & Disciglio, Grazia & Tarantino, Emanuele, 2015. "Treated agro-industrial wastewater irrigation of tomato crop: Effects on qualitative/quantitative characteristics of production and microbiological properties of the soil," Agricultural Water Management, Elsevier, vol. 149(C), pages 33-43.
    8. Mkhinini, Marouane & Boughattas, Iteb & Alphonse, Vanessa & Livet, Alexandre & Gıustı-Mıller, Stéphanie & Bannı, Mohamed & Bousserrhıne, Noureddine, 2020. "Heavy metal accumulation and changes in soil enzymes activities and bacterial functional diversity under long-term treated wastewater irrigation in East Central region of Tunisia (Monastir governorate," Agricultural Water Management, Elsevier, vol. 235(C).
    9. Fridrich, Beata & Krčmar, Dejan & Dalmacija, Božo & Molnar, Jelena & Pešić, Vesna & Kragulj, Marijana & Varga, Nataša, 2014. "Impact of wastewater from pig farm lagoons on the quality of local groundwater," Agricultural Water Management, Elsevier, vol. 135(C), pages 40-53.
    10. Pedrero, Francisco & Grattan, S.R. & Ben-Gal, Alon & Vivaldi, Gaetano Alessandro, 2020. "Opportunities for expanding the use of wastewaters for irrigation of olives," Agricultural Water Management, Elsevier, vol. 241(C).
    11. Ejovi Akpojevwe Abafe & Yonas T. Bahta & Henry Jordaan, 2022. "Exploring Biblioshiny for Historical Assessment of Global Research on Sustainable Use of Water in Agriculture," Sustainability, MDPI, vol. 14(17), pages 1-34, August.
    12. Dimitra Lazaridou & Anastasios Michailidis & Konstantinos Mattas, 2019. "Evaluating the Willingness to Pay for Using Recycled Water for Irrigation," Sustainability, MDPI, vol. 11(19), pages 1-8, September.
    13. Sana Khalid & Muhammad Shahid & Natasha & Irshad Bibi & Tania Sarwar & Ali Haidar Shah & Nabeel Khan Niazi, 2018. "A Review of Environmental Contamination and Health Risk Assessment of Wastewater Use for Crop Irrigation with a Focus on Low and High-Income Countries," IJERPH, MDPI, vol. 15(5), pages 1-36, May.
    14. Zafar Iqbal Khan & Rehan Haider & Kafeel Ahmad & Muhammad Nadeem & Asma Ashfaq & Abdulwahed Fahad Alrefaei & Mikhlid H. Almutairi & Naunain Mehmood & Aima Iram Batool & Hafsa Memona & Ijaz Rasool Noor, 2023. "Evaluation of Cu, Zn, Fe, and Mn Concentrations in Water, Soil, and Fruit Samples in Sargodha District, Pakistan," Sustainability, MDPI, vol. 15(22), pages 1-17, November.
    15. Feder, Frédéric, 2021. "Irrigation with treated wastewater in humid regions: Effects on Nitisols, sugarcane yield and quality," Agricultural Water Management, Elsevier, vol. 247(C).
    16. Jemal Fito & Stijn W. H. Hulle, 2021. "Wastewater reclamation and reuse potentials in agriculture: towards environmental sustainability," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 2949-2972, March.
    17. Axelrad, Gilad & Feinerman, Eli, 2007. "Regional Planning Of Wastewater Reuse For Irrigation And River Rehabilitation," Discussion Papers 7141, Hebrew University of Jerusalem, Department of Agricultural Economics and Management.
    18. Aiello, Rosa & Cirelli, Giuseppe Luigi & Consoli, Simona, 2007. "Effects of reclaimed wastewater irrigation on soil and tomato fruits: A case study in Sicily (Italy)," Agricultural Water Management, Elsevier, vol. 93(1-2), pages 65-72, October.
    19. Cirelli, G.L. & Consoli, S. & Licciardello, F. & Aiello, R. & Giuffrida, F. & Leonardi, C., 2012. "Treated municipal wastewater reuse in vegetable production," Agricultural Water Management, Elsevier, vol. 104(C), pages 163-170.
    20. Kourgialas, Nektarios N. & Dokou, Zoi, 2021. "Water management and salinity adaptation approaches of Avocado trees: A review for hot-summer Mediterranean climate," Agricultural Water Management, Elsevier, vol. 252(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:135:y:2014:i:c:p:100-108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.