IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v154y2015icp1-10.html
   My bibliography  Save this article

Area determination of solar desalination system for irrigating crops in greenhouses using different quality feed water

Author

Listed:
  • Mashaly, Ahmed F.
  • Alazba, A.A.
  • Al-Awaadh, A.M.
  • Mattar, Mohamed A.

Abstract

The aim of this study was to present an alternative means of procuring fresh water from low-quality water sources to meet crop-water requirements (CWR) in greenhouses. A solar still was used in field experiments to desalinate three types of water: seawater, ground water and agricultural-drainage water. Three multiple linear regression models were derived, with an average coefficient of determination (R2) of 0.90 for the prediction of water-productivity capacity (MD). Two methods were used to estimate the CWR of greenhouses: the adapted Penman-Monteith (A-PM) method and the Fernandez (F) method. The R2 for the two methods was 0.95. The three water-productivity measurements were compared with the water requirements throughout the year to determine the required area of the solar-desalination system. The results indicated that the A-PM method can be used to estimate the CWR of crops grown in greenhouses. Generally, MD exceeded CWR throughout the year, and the average MD of the water types was 4.79L/m2/day. In addition, the average CWR values obtained using the A-PM and F methods were identical (1.88L/m2/day). The water produced by 1m2 of the solar-still system was also found to meet the CWR of about 2m2 of greenhouse. As the system's MD exceeds the CWR of a greenhouse, the proposed solar-desalination system is clearly able to meet greenhouse CWR.

Suggested Citation

  • Mashaly, Ahmed F. & Alazba, A.A. & Al-Awaadh, A.M. & Mattar, Mohamed A., 2015. "Area determination of solar desalination system for irrigating crops in greenhouses using different quality feed water," Agricultural Water Management, Elsevier, vol. 154(C), pages 1-10.
  • Handle: RePEc:eee:agiwat:v:154:y:2015:i:c:p:1-10
    DOI: 10.1016/j.agwat.2015.02.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837741500058X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2015.02.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhani, Khalifa, 2013. "Solar desalination based on multiple effect humidification process: Thermal performance and experimental validation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 406-417.
    2. Harmanto & Salokhe, V.M. & Babel, M.S. & Tantau, H.J., 2005. "Water requirement of drip irrigated tomatoes grown in greenhouse in tropical environment," Agricultural Water Management, Elsevier, vol. 71(3), pages 225-242, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arabnejad, Hossein & Mirzaei, Farhad & Noory, Hamideh, 2021. "Greenhouse cultivation feasibility using condensation irrigation (studied plant: Basil)," Agricultural Water Management, Elsevier, vol. 245(C).
    2. Elsayed M. Ramadan & Abir M. Badr & Fadi Abdelradi & Abdelazim Negm & Ahmed M. Nosair, 2023. "Detection of Groundwater Quality Changes in Minia Governorate, West Nile River," Sustainability, MDPI, vol. 15(5), pages 1-26, February.
    3. Hassan A. Awaad & Elsayed Mansour & Mohammad Akrami & Hassan E.S. Fath & Akbar A. Javadi & Abdelazim Negm, 2020. "Availability and Feasibility of Water Desalination as a Non-Conventional Resource for Agricultural Irrigation in the MENA Region: A Review," Sustainability, MDPI, vol. 12(18), pages 1-14, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ngouajio, Mathieu & Wang, Guangyao & Goldy, Ronald, 2007. "Withholding of drip irrigation between transplanting and flowering increases the yield of field-grown tomato under plastic mulch," Agricultural Water Management, Elsevier, vol. 87(3), pages 285-291, February.
    2. Tahiri, Adel Zeggaf & Anyoji, H. & Yasuda, H., 2006. "Fixed and variable light extinction coefficients for estimating plant transpiration and soil evaporation under irrigated maize," Agricultural Water Management, Elsevier, vol. 84(1-2), pages 186-192, July.
    3. Shaikh Abdullah Al MAMUN HOSSAIN & Lixue WANG & Taotao CHEN & Zhenhua LI, 2017. "Leaf area index assessment for tomato and cucumber growing period under different water treatments," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 63(10), pages 461-467.
    4. Fullana-Pericàs, Mateu & Conesa, Miquel À. & Gago, Jorge & Ribas-Carbó, Miquel & Galmés, Jeroni, 2022. "High-throughput phenotyping of a large tomato collection under water deficit: Combining UAVs’ remote sensing with conventional leaf-level physiologic and agronomic measurements," Agricultural Water Management, Elsevier, vol. 260(C).
    5. Yan, Haofang & Acquah, Samuel Joe & Zhang, Chuan & Wang, Guoqing & Huang, Song & Zhang, Hengnian & Zhao, Baoshan & Wu, Haimei, 2019. "Energy partitioning of greenhouse cucumber based on the application of Penman-Monteith and Bulk Transfer models," Agricultural Water Management, Elsevier, vol. 217(C), pages 201-211.
    6. Yang, Lijuan & Zhao, Fengyan & Chang, Qing & Li, Tianlai & Li, Fusheng, 2015. "Effects of vermicomposts on tomato yield and quality and soil fertility in greenhouse under different soil water regimes," Agricultural Water Management, Elsevier, vol. 160(C), pages 98-105.
    7. Roonjho, Shaheen Javed & Kamal, Rowshon Md & Roonjho, Abdul Rehman, 2022. "Modeling capillary wick irrigation system for greenhouse crop production," Agricultural Water Management, Elsevier, vol. 274(C).
    8. Indranil Samui & Milan Skalicky & Sukamal Sarkar & Koushik Brahmachari & Sayan Sau & Krishnendu Ray & Akbar Hossain & Argha Ghosh & Manoj Kumar Nanda & Richard W. Bell & Mohammed Mainuddin & Marian Br, 2020. "Yield Response, Nutritional Quality and Water Productivity of Tomato ( Solanum lycopersicum L.) are Influenced by Drip Irrigation and Straw Mulch in the Coastal Saline Ecosystem of Ganges Delta, India," Sustainability, MDPI, vol. 12(17), pages 1-21, August.
    9. Lin, Dong & Zhang, Lijun & Xia, Xiaohua, 2021. "Model predictive control of a Venlo-type greenhouse system considering electrical energy, water and carbon dioxide consumption," Applied Energy, Elsevier, vol. 298(C).
    10. Shih-Lun Fang & Ting-Jung Chang & Yuan-Kai Tu & Han-Wei Chen & Min-Hwi Yao & Bo-Jein Kuo, 2022. "Plant-Response-Based Control Strategy for Irrigation and Environmental Controls for Greenhouse Tomato Seedling Cultivation," Agriculture, MDPI, vol. 12(5), pages 1-17, April.
    11. Jeet Chand & Guna Hewa & Ali Hassanli & Baden Myers, 2020. "Evaluation of Deficit Irrigation and Water Quality on Production and Water Productivity of Tomato in Greenhouse," Agriculture, MDPI, vol. 10(7), pages 1-18, July.
    12. Kuşçu, Hayrettin & Turhan, Ahmet & Demir, Ali Osman, 2014. "The response of processing tomato to deficit irrigation at various phenological stages in a sub-humid environment," Agricultural Water Management, Elsevier, vol. 133(C), pages 92-103.
    13. Sharon, H. & Reddy, K.S., 2015. "A review of solar energy driven desalination technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1080-1118.
    14. Mohammad Nabil Elnesr & Abdurrahman Ali Alazba & Assem Ibrahim Zein El-Abedein & Mahmoud Maher El-Adl, 2015. "Evaluating the Effect of Three Water Management Techniques on Tomato Crop," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-17, June.
    15. Rahil, M.H. & Qanadillo, A., 2015. "Effects of different irrigation regimes on yield and water use efficiency of cucumber crop," Agricultural Water Management, Elsevier, vol. 148(C), pages 10-15.
    16. Phogat, V. & Mallants, Dirk & Cox, J.W. & Šimůnek, J. & Oliver, D.P. & Awad, J., 2020. "Management of soil salinity associated with irrigation of protected crops," Agricultural Water Management, Elsevier, vol. 227(C).
    17. Yang, Hui & Du, Taisheng & Qiu, Rangjian & Chen, Jinliang & Wang, Feng & Li, Yang & Wang, Chenxia & Gao, Lihong & Kang, Shaozhong, 2017. "Improved water use efficiency and fruit quality of greenhouse crops under regulated deficit irrigation in northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 193-204.
    18. Saidi, Sirine & Ben Radhia, Rym & Nafiri, Naima & Benhamou, Brahim & Jabrallah, Sadok Ben, 2023. "Numerical study and experimental validation of a solar powered humidification-dehumidification desalination system with integrated air and water collectors in the humidifier," Renewable Energy, Elsevier, vol. 206(C), pages 466-480.
    19. Nangare, D.D. & Singh, Yogeshwar & Kumar, P. Suresh & Minhas, P.S., 2016. "Growth, fruit yield and quality of tomato (Lycopersicon esculentum Mill.) as affected by deficit irrigation regulated on phenological basis," Agricultural Water Management, Elsevier, vol. 171(C), pages 73-79.
    20. Gong, Xuewen & Qiu, Rangjian & Zhang, Baozhong & Wang, Shunsheng & Ge, Jiankun & Gao, Shikai & Yang, Zaiqiang, 2021. "Energy budget for tomato plants grown in a greenhouse in northern China," Agricultural Water Management, Elsevier, vol. 255(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:154:y:2015:i:c:p:1-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.