IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i5p4076-d1078231.html
   My bibliography  Save this article

Detection of Groundwater Quality Changes in Minia Governorate, West Nile River

Author

Listed:
  • Elsayed M. Ramadan

    (Water and Water Structures Engineering Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt)

  • Abir M. Badr

    (Civil Engineer in West Sharkia Directorate for Water Resources & Irrigation, Ministry of Water Resources and Irrigation, Zagazig 44519, Egypt)

  • Fadi Abdelradi

    (Department of Agricultural Economics, Faculty of Agriculture, Cairo University, Giza 12613, Egypt)

  • Abdelazim Negm

    (Water and Water Structures Engineering Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt)

  • Ahmed M. Nosair

    (Environmental Geophysics Lab (ZEGL), Geology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt)

Abstract

The need for freshwater supplies is increasingly rising according to the increase in the inhabitants’ expansion and economic growth. Available water resources are reduced by pollution and overpumping. This research’s prime objective is to study changes in the water quality of the Pleistocene aquifer in Minia Governorate. Historical hydro-chemical data of the groundwater in two years 2009 and 2019 were used to study the changes in the groundwater quality of the Pleistocene aquifer under the impact of the recharge and discharge processes. The Nile River, and the Al-Ibrahimia and Bahr Youssef Canals are considered the main sources of aquifer recharge. Collected data from 53 groundwater wells in the Pleistocene aquifer were used to calculate the sodium adsorption ratio (SAR), sodium percentage (Na%), Kelly index (KI), Soluble Sodium Percentage (SSP), magnesium ratio (MR%), permeability index (PI) and chloro-alkaline index (CAI). These data were used to evaluate and detect the quality and changes in groundwater through the years 2009 and 2019 using spatial mapping in the geographic information system (GIS). The values of SAR, KI and Na% varied between 0.06–1.22, 0.02–0.57 meq/L and 3.7–37.63%, respectively, in the year 2009, but these values changed to 0.4–0.75, 0.16–0.28 meq/L and 15.07–23.44% in the year 2019. The calculated MR and PI values indicate that 100% of the groundwater samples were in the “suitable” category. The calculated SSP reflects no changes in groundwater alkalinity between the years 2009 and 2019. The hydro-chemical analysis of the studied groundwater (G.W.) samples shows high pollution levels caused by Pb and Fe in some parts of the study area. Pb was found to be >40 µg/L in the middle parts, whereas Fe was found with high levels in 27% of the studied groundwater samples. The localities of these samples were affected by pollution from the industrial wastewater from the sugar factory of Abou-Qarqas city (e.g., El-Moheet drain), the fertilizer leaching process and pesticides seeping into groundwater from soils and agricultural wastewater.

Suggested Citation

  • Elsayed M. Ramadan & Abir M. Badr & Fadi Abdelradi & Abdelazim Negm & Ahmed M. Nosair, 2023. "Detection of Groundwater Quality Changes in Minia Governorate, West Nile River," Sustainability, MDPI, vol. 15(5), pages 1-26, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4076-:d:1078231
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/5/4076/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/5/4076/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohsen Farzin & Azar Asadi & Katarina Pukanska & Martina Zelenakova, 2022. "An Assessment on the Safety of Drinking Water Resources in Yasouj, Iran," Sustainability, MDPI, vol. 14(6), pages 1-12, March.
    2. Hassan A. Awaad & Elsayed Mansour & Mohammad Akrami & Hassan E.S. Fath & Akbar A. Javadi & Abdelazim Negm, 2020. "Availability and Feasibility of Water Desalination as a Non-Conventional Resource for Agricultural Irrigation in the MENA Region: A Review," Sustainability, MDPI, vol. 12(18), pages 1-14, September.
    3. Mashaly, Ahmed F. & Alazba, A.A. & Al-Awaadh, A.M. & Mattar, Mohamed A., 2015. "Area determination of solar desalination system for irrigating crops in greenhouses using different quality feed water," Agricultural Water Management, Elsevier, vol. 154(C), pages 1-10.
    4. Hatem Jemmali & Caroline Sullivan, 2014. "Multidimensional Analysis of Water Poverty in MENA Region: An Empirical Comparison with Physical Indicators," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 115(1), pages 253-277, January.
    5. Mohamed K. Abdel-Fattah & Elsayed Said Mohamed & Enas M. Wagdi & Sahar A. Shahin & Ali A. Aldosari & Rosa Lasaponara & Manal A. Alnaimy, 2021. "Quantitative Evaluation of Soil Quality Using Principal Component Analysis: The Case Study of El-Fayoum Depression Egypt," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed Khaled Abdella Ahmed & Mustafa El-Rawy & Amira Mofreh Ibraheem & Nassir Al-Arifi & Mahmoud Khaled Abd-Ellah, 2023. "Forecasting of Groundwater Quality by Using Deep Learning Time Series Techniques in an Arid Region," Sustainability, MDPI, vol. 15(8), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sonika Redhu & Pragati Jain, 2024. "Unveiling the nexus between water scarcity and socioeconomic development in the water-scarce countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 19557-19577, August.
    2. Elsayed A. Abdelsamie & Mostafa A. Abdellatif & Farag O. Hassan & Ahmed A. El Baroudy & Elsayed Said Mohamed & Dmitry E. Kucher & Mohamed S. Shokr, 2022. "Integration of RUSLE Model, Remote Sensing and GIS Techniques for Assessing Soil Erosion Hazards in Arid Zones," Agriculture, MDPI, vol. 13(1), pages 1-19, December.
    3. Manal A. Alnaimy & Sahar A. Shahin & Ahmed A. Afifi & Ahmed A. Ewees & Natalia Junakova & Magdalena Balintova & Mohamed Abd Elaziz, 2022. "Spatio Prediction of Soil Capability Modeled with Modified RVFL Using Aptenodytes Forsteri Optimization and Digital Soil Assessment Technique," Sustainability, MDPI, vol. 14(22), pages 1-20, November.
    4. Dongying Sun & Jiarong Gu & Junyu Chen & Xilin Xia & Zhisong Chen, 2022. "Spatiotemporal differentiation and influencing factors of urban water supply system resilience in the Yangtze River Delta urban agglomeration," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 101-126, October.
    5. Imbernón-Mulero, Alberto & Gallego-Elvira, Belén & Martínez-Alvarez, Victoriano & Acosta, José A. & Antolinos, Vera & Robles, Juan M. & Navarro, Josefa M. & Maestre-Valero, José F., 2024. "Irrigation of young grapefruits with desalinated seawater: Agronomic and economic outcomes," Agricultural Water Management, Elsevier, vol. 299(C).
    6. Weijing Ma & Lihong Meng & Feili Wei & Christian Opp & Dewei Yang, 2020. "Sensitive Factors Identification and Scenario Simulation of Water Demand in the Arid Agricultural Area Based on the Socio-Economic-Environment Nexus," Sustainability, MDPI, vol. 12(10), pages 1-19, May.
    7. Aisha Aziz & Kashif Akram & Muhammad Abrar ul Haq & Iqbal Thonse Hawaldar & Mustafa Raza Rabbani, 2022. "Examining the Role of Clean Drinking Water Plants in Mitigating Drinking Water-Induced Morbidity," Sustainability, MDPI, vol. 14(15), pages 1-21, August.
    8. Yingying Xing & Ning Wang & Xiaoli Niu & Wenting Jiang & Xiukang Wang, 2021. "Assessment of Potato Farmland Soil Nutrient Based on MDS-SQI Model in the Loess Plateau," Sustainability, MDPI, vol. 13(7), pages 1-13, April.
    9. O. Flores Baquero & J. Gallego-Ayala & R. Giné-Garriga & A. Jiménez-Fernández. Palencia & A. Pérez-Foguet, 2017. "The Influence of the Human Rights to Water and Sanitation Normative Content in Measuring the Level of Service," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 133(2), pages 763-786, September.
    10. Jose Maria Fernandez-Crehuet & J. Ignacio Gimenez-Nadal & Luisa Eugenia Reyes Recio, 2016. "The National Work–Life Balance Index©: The European Case," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 128(1), pages 341-359, August.
    11. A. Majeed Nadeem & Roland Cheo & Huang Shaoan, 2018. "Multidimensional Analysis of Water Poverty and Subjective Well-Being: A Case Study on Local Household Variation in Faisalabad, Pakistan," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 138(1), pages 207-224, July.
    12. Marko Kallio & Joseph H. A. Guillaume & Matti Kummu & Kirsi Virrantaus, 2018. "Spatial Variation in Seasonal Water Poverty Index for Laos: An Application of Geographically Weighted Principal Component Analysis," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 140(3), pages 1131-1157, December.
    13. Ahmed M. Aggag & Abdulaziz Alharbi, 2022. "Spatial Analysis of Soil Properties and Site-Specific Management Zone Delineation for the South Hail Region, Saudi Arabia," Sustainability, MDPI, vol. 14(23), pages 1-19, December.
    14. Ahmed S Abuzaid & Yasser S. A. Mazrou & Ahmed A El Baroudy & Zheli Ding & Mohamed S. Shokr, 2022. "Multi-Indicator and Geospatial Based Approaches for Assessing Variation of Land Quality in Arid Agroecosystems," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    15. Caroline A Sullivan & Hatem Jemmali, 2014. "Toward Understanding Water Conflicts in MENA Region: A Comparative Analysis Using Water Poverty Index," Working Papers 859, Economic Research Forum, revised Nov 2014.
    16. Jaime Martínez-Valderrama & Jorge Olcina & Gonzalo Delacámara & Emilio Guirado & Fernando T. Maestre, 2023. "Complex Policy Mixes are Needed to Cope with Agricultural Water Demands Under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2805-2834, May.
    17. Inna Z. Kamanina & Wael M. Badawy & Svetlana P. Kaplina & Oleg A. Makarov & Sergey V. Mamikhin, 2023. "Assessment of Soil Potentially Toxic Metal Pollution in Kolchugino Town, Russia: Characteristics and Pollution," Land, MDPI, vol. 12(2), pages 1-16, February.
    18. Mostafa A. Abdellatif & Farag O. Hassan & Heba S. A. Rashed & Ahmed A. El Baroudy & Elsayed Said Mohamed & Dmitry E. Kucher & Sameh Kotb Abd-Elmabod & Mohamed S. Shokr & Ahmed S. Abuzaid, 2023. "Assessing Soil Organic Carbon Pool for Potential Climate-Change Mitigation in Agricultural Soils—A Case Study Fayoum Depression, Egypt," Land, MDPI, vol. 12(9), pages 1-19, September.
    19. Ane Pan & Darrell Bosch & Huimin Ma, 2017. "Assessing Water Poverty in China Using Holistic and Dynamic Principal Component Analysis," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 130(2), pages 537-561, January.
    20. Shan Huang & Qi Feng & Zhixiang Lu & Xiaohu Wen & Ravinesh C. Deo, 2017. "Trend Analysis of Water Poverty Index for Assessment of Water Stress and Water Management Polices: A Case Study in the Hexi Corridor, China," Sustainability, MDPI, vol. 9(5), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4076-:d:1078231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.