IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v217y2019icp201-211.html
   My bibliography  Save this article

Energy partitioning of greenhouse cucumber based on the application of Penman-Monteith and Bulk Transfer models

Author

Listed:
  • Yan, Haofang
  • Acquah, Samuel Joe
  • Zhang, Chuan
  • Wang, Guoqing
  • Huang, Song
  • Zhang, Hengnian
  • Zhao, Baoshan
  • Wu, Haimei

Abstract

Partitioning between latent (LET) and sensible (H) heat fluxes is critical in improving the greenhouse crops irrigation scheduling and microclimate. By applying the Bulk Transfer (BT) and Penman-Monteith (PM) models, the energy fluxes in different growing stages of the cucumber crop were determined in a Venlo-type greenhouse. The application of the BT and PM models is constrained by accurate parameterizations of canopy resistance (rc) and aerodynamic resistance (ra). In this paper, we measured micrometeorological data, crop growth index and LET during cucumber growing seasons in spring and autumn of 2016. The rc was modelled with stomatal conductance of cucumber leaves and validated with actual measurement of LET by lysimeters. The results showed that rc varied from 35 s m−1 during the day to 500 s m−1 at night in spring season, whilst it ranged from 40 s m−1 during the day to 1000 s m−1 at night in autumn season. Comparison of rc estimated by the PM and the BT models demonstrated that the rc estimated by the two methods were similar and highly correlated for both seasons. During the spring season, the PM and the BT models gave the determination coefficients (R2) of predicted hourly LET equal to 0.94 and 0.83, whereas during the autumn season, the values were 0.94 and 0.76, respectively. The average root mean square errors (RMSE) of measured and predicted hourly LET were 96.97 and 74.74 W m-2 for the spring and autumn seasons for PM model, respectively. In contrast, the BT model gave RMSE of measured and predicted hourly LET of 82.47 and 69.14 W m-2, for spring and autumn, respectively. The results also depicted that the simplified energy balance approach was a feasible alternative to partition the energy fluxes in the greenhouse. The predictions made in this study would be an easy and relatively accurate way to partition greenhouse cucumber energy fluxes and thus, scientifically plan the irrigation schedule. In conclusion, this study provides scientific basis for optimizing efficient water-saving irrigation, development of a suitable irrigation scheduling and improving crop water use efficiency in the greenhouse, and consequently, more energy savings by avoiding excessive water application and thereby the objective of having improved and satisfactory yield and higher economic returns can be achieved.

Suggested Citation

  • Yan, Haofang & Acquah, Samuel Joe & Zhang, Chuan & Wang, Guoqing & Huang, Song & Zhang, Hengnian & Zhao, Baoshan & Wu, Haimei, 2019. "Energy partitioning of greenhouse cucumber based on the application of Penman-Monteith and Bulk Transfer models," Agricultural Water Management, Elsevier, vol. 217(C), pages 201-211.
  • Handle: RePEc:eee:agiwat:v:217:y:2019:i:c:p:201-211
    DOI: 10.1016/j.agwat.2019.02.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418309855
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.02.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Allen, Richard G. & Pruitt, William O. & Wright, James L. & Howell, Terry A. & Ventura, Francesca & Snyder, Richard & Itenfisu, Daniel & Steduto, Pasquale & Berengena, Joaquin & Yrisarry, Javier Basel, 2006. "A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method," Agricultural Water Management, Elsevier, vol. 81(1-2), pages 1-22, March.
    2. Jahani, Babak & Dinpashoh, Y. & Raisi Nafchi, Atefeh, 2017. "Evaluation and development of empirical models for estimating daily solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 878-891.
    3. Harmanto & Salokhe, V.M. & Babel, M.S. & Tantau, H.J., 2005. "Water requirement of drip irrigated tomatoes grown in greenhouse in tropical environment," Agricultural Water Management, Elsevier, vol. 71(3), pages 225-242, February.
    4. Yang, Yang & Cui, Yuanlai & Luo, Yufeng & Lyu, Xinwei & Traore, Seydou & Khan, Shahbaz & Wang, Weiguang, 2016. "Short-term forecasting of daily reference evapotranspiration using the Penman-Monteith model and public weather forecasts," Agricultural Water Management, Elsevier, vol. 177(C), pages 329-339.
    5. Zhao, Nana & Liu, Yu & Cai, Jiabing & Paredes, Paula & Rosa, Ricardo D. & Pereira, Luis S., 2013. "Dual crop coefficient modelling applied to the winter wheat–summer maize crop sequence in North China Plain: Basal crop coefficients and soil evaporation component," Agricultural Water Management, Elsevier, vol. 117(C), pages 93-105.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Bo & Shi, Bijiao & Yao, Zhenzhu & Kumar Shukla, Manoj & Du, Taisheng, 2020. "Energy partitioning and microclimate of solar greenhouse under drip and furrow irrigation systems," Agricultural Water Management, Elsevier, vol. 234(C).
    2. Yi, Ping & Liu, Hao & Liu, Shengxing & Han, Yang & Zhang, Xianbo & Yang, Guang & Wang, Chunting & Kader, Abdoul & Qiang, Xiaoman & Wang, Jinglei, 2024. "Assessment for aerodynamic and canopy resistances in simulating latent heat flux of Venlo-type greenhouse tomato," Agricultural Water Management, Elsevier, vol. 297(C).
    3. Yan, Haofang & Yu, Jianjun & Zhang, Chuan & Wang, Guoqing & Huang, Song & Ma, Jiamin, 2021. "Comparison of two canopy resistance models to estimate evapotranspiration for tea and wheat in southeast China," Agricultural Water Management, Elsevier, vol. 245(C).
    4. Gong, Xuewen & Qiu, Rangjian & Zhang, Baozhong & Wang, Shunsheng & Ge, Jiankun & Gao, Shikai & Yang, Zaiqiang, 2021. "Energy budget for tomato plants grown in a greenhouse in northern China," Agricultural Water Management, Elsevier, vol. 255(C).
    5. Yan, Haofang & Li, Mi & Zhang, Chuan & Zhang, Jianyun & Wang, Guoqing & Yu, Jianjun & Ma, Jiamin & Zhao, Shuang, 2022. "Comparison of evapotranspiration upscaling methods from instantaneous to daytime scale for tea and wheat in southeast China," Agricultural Water Management, Elsevier, vol. 264(C).
    6. Liu, Hao & Li, Huanhuan & Ning, Huifeng & Zhang, Xiaoxian & Li, Shuang & Pang, Jie & Wang, Guangshuai & Sun, Jingsheng, 2019. "Optimizing irrigation frequency and amount to balance yield, fruit quality and water use efficiency of greenhouse tomato," Agricultural Water Management, Elsevier, vol. 226(C).
    7. Qu, Feng & Zhang, Qi & Jiang, Zhaoxi & Zhang, Caihong & Zhang, Zhi & Hu, Xiaohui, 2022. "Optimizing irrigation and fertilization frequency for greenhouse cucumber grown at different air temperatures using a comprehensive evaluation model," Agricultural Water Management, Elsevier, vol. 273(C).
    8. Gong, Xuewen & Qiu, Rangjian & Sun, Jingsheng & Ge, Jiankun & Li, Yanbin & Wang, Shunsheng, 2020. "Evapotranspiration and crop coefficient of tomato grown in a solar greenhouse under full and deficit irrigation," Agricultural Water Management, Elsevier, vol. 235(C).
    9. Huang, Song & Yan, Haofang & Zhang, Chuan & Wang, Guoqing & Acquah, Samuel Joe & Yu, Jianjun & Li, Lanlan & Ma, Jiamin & Opoku Darko, Ransford, 2020. "Modeling evapotranspiration for cucumber plants based on the Shuttleworth-Wallace model in a Venlo-type greenhouse," Agricultural Water Management, Elsevier, vol. 228(C).
    10. Haofang Yan & Song Huang & Jianyun Zhang & Chuan Zhang & Guoqing Wang & Lanlan Li & Shuang Zhao & Mi Li & Baoshan Zhao, 2022. "Comparison of Shuttleworth–Wallace and Dual Crop Coefficient Method for Estimating Evapotranspiration of a Tea Field in Southeast China," Agriculture, MDPI, vol. 12(9), pages 1-17, September.
    11. Yan, Haofang & Deng, Shuaishuai & Zhang, Chuan & Wang, Guoqing & Zhao, Shuang & Li, Mi & Liang, Shaowei & Jiang, Jianhui & Zhou, Yudong, 2023. "Determination of energy partition of a cucumber grown Venlo-type greenhouse in southeast China," Agricultural Water Management, Elsevier, vol. 276(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Mota, M. & Wang, T., 2021. "Prediction of crop coefficients from fraction of ground cover and height: Practical application to vegetable, field and fruit crops with focus on parameterization," Agricultural Water Management, Elsevier, vol. 252(C).
    2. Luis Santos Pereira, 2017. "Water, Agriculture and Food: Challenges and Issues," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2985-2999, August.
    3. Qiu, Rangjian & Li, Longan & Wu, Lifeng & Agathokleous, Evgenios & Liu, Chunwei & Zhang, Baozhong & Luo, Yufeng & Sun, Shanlei, 2022. "Modeling daily global solar radiation using only temperature data: Past, development, and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    4. Paredes, P. & Pereira, L.S. & Almorox, J. & Darouich, H., 2020. "Reference grass evapotranspiration with reduced data sets: Parameterization of the FAO Penman-Monteith temperature approach and the Hargeaves-Samani equation using local climatic variables," Agricultural Water Management, Elsevier, vol. 240(C).
    5. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Wang, T. & López-Urrea, R. & Cancela, J.J. & Allen, R.G., 2020. "Prediction of crop coefficients from fraction of ground cover and height. Background and validation using ground and remote sensing data," Agricultural Water Management, Elsevier, vol. 241(C).
    6. Paredes, P. & Pereira, L.S., 2019. "Computing FAO56 reference grass evapotranspiration PM-ETo from temperature with focus on solar radiation," Agricultural Water Management, Elsevier, vol. 215(C), pages 86-102.
    7. Pereira, L.S. & Paredes, P. & Jovanovic, N., 2020. "Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach," Agricultural Water Management, Elsevier, vol. 241(C).
    8. Xu, Junzeng & Liu, Xiaoyin & Yang, Shihong & Qi, Zhiming & Wang, Yijiang, 2017. "Modeling rice evapotranspiration under water-saving irrigation by calibrating canopy resistance model parameters in the Penman-Monteith equation," Agricultural Water Management, Elsevier, vol. 182(C), pages 55-66.
    9. Darouich, Hanaa & Karfoul, Razan & Ramos, Tiago B. & Moustafa, Ali & Shaheen, Baraa & Pereira, Luis S., 2021. "Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region," Agricultural Water Management, Elsevier, vol. 255(C).
    10. Gao, Yang & Yang, Linlin & Shen, Xiaojun & Li, Xinqiang & Sun, Jingsheng & Duan, Aiwang & Wu, Laosheng, 2014. "Winter wheat with subsurface drip irrigation (SDI): Crop coefficients, water-use estimates, and effects of SDI on grain yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 146(C), pages 1-10.
    11. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    12. Ngouajio, Mathieu & Wang, Guangyao & Goldy, Ronald, 2007. "Withholding of drip irrigation between transplanting and flowering increases the yield of field-grown tomato under plastic mulch," Agricultural Water Management, Elsevier, vol. 87(3), pages 285-291, February.
    13. Rosa, R.D. & Ramos, T.B. & Pereira, L.S., 2016. "The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 177(C), pages 77-94.
    14. Cao, Jingjing & Tan, Junwei & Cui, Yuanlai & Luo, Yufeng, 2019. "Irrigation scheduling of paddy rice using short-term weather forecast data," Agricultural Water Management, Elsevier, vol. 213(C), pages 714-723.
    15. Gonçalo C. Rodrigues & Ricardo P. Braga, 2021. "Estimation of Reference Evapotranspiration during the Irrigation Season Using Nine Temperature-Based Methods in a Hot-Summer Mediterranean Climate," Agriculture, MDPI, vol. 11(2), pages 1-13, February.
    16. Panagiotis Christias & Ioannis N. Daliakopoulos & Thrassyvoulos Manios & Mariana Mocanu, 2020. "Comparison of Three Computational Approaches for Tree Crop Irrigation Decision Support," Mathematics, MDPI, vol. 8(5), pages 1-26, May.
    17. Chintala, Syam & Karimindla, Arun Rao & Kambhammettu, BVN P., 2024. "Scaling relations between leaf and plant water use efficiencies in rainfed Cotton," Agricultural Water Management, Elsevier, vol. 292(C).
    18. Gong, Daozhi & Mei, Xurong & Hao, Weiping & Wang, Hanbo & Caylor, Kelly K., 2017. "Comparison of ET partitioning and crop coefficients between partial plastic mulched and non-mulched maize fields," Agricultural Water Management, Elsevier, vol. 181(C), pages 23-34.
    19. Choudhury, B.U. & Singh, Anil Kumar & Pradhan, S., 2013. "Estimation of crop coefficients of dry-seeded irrigated rice–wheat rotation on raised beds by field water balance method in the Indo-Gangetic plains, India," Agricultural Water Management, Elsevier, vol. 123(C), pages 20-31.
    20. Althoff, Daniel & Filgueiras, Roberto & Dias, Santos Henrique Brant & Rodrigues, Lineu Neiva, 2019. "Impact of sum-of-hourly and daily timesteps in the computations of reference evapotranspiration across the Brazilian territory," Agricultural Water Management, Elsevier, vol. 226(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:217:y:2019:i:c:p:201-211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.