Energy partitioning of greenhouse cucumber based on the application of Penman-Monteith and Bulk Transfer models
Author
Abstract
Suggested Citation
DOI: 10.1016/j.agwat.2019.02.036
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Allen, Richard G. & Pruitt, William O. & Wright, James L. & Howell, Terry A. & Ventura, Francesca & Snyder, Richard & Itenfisu, Daniel & Steduto, Pasquale & Berengena, Joaquin & Yrisarry, Javier Basel, 2006. "A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method," Agricultural Water Management, Elsevier, vol. 81(1-2), pages 1-22, March.
- Jahani, Babak & Dinpashoh, Y. & Raisi Nafchi, Atefeh, 2017. "Evaluation and development of empirical models for estimating daily solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 878-891.
- Harmanto & Salokhe, V.M. & Babel, M.S. & Tantau, H.J., 2005. "Water requirement of drip irrigated tomatoes grown in greenhouse in tropical environment," Agricultural Water Management, Elsevier, vol. 71(3), pages 225-242, February.
- Yang, Yang & Cui, Yuanlai & Luo, Yufeng & Lyu, Xinwei & Traore, Seydou & Khan, Shahbaz & Wang, Weiguang, 2016. "Short-term forecasting of daily reference evapotranspiration using the Penman-Monteith model and public weather forecasts," Agricultural Water Management, Elsevier, vol. 177(C), pages 329-339.
- Zhao, Nana & Liu, Yu & Cai, Jiabing & Paredes, Paula & Rosa, Ricardo D. & Pereira, Luis S., 2013. "Dual crop coefficient modelling applied to the winter wheat–summer maize crop sequence in North China Plain: Basal crop coefficients and soil evaporation component," Agricultural Water Management, Elsevier, vol. 117(C), pages 93-105.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Li, Bo & Shi, Bijiao & Yao, Zhenzhu & Kumar Shukla, Manoj & Du, Taisheng, 2020. "Energy partitioning and microclimate of solar greenhouse under drip and furrow irrigation systems," Agricultural Water Management, Elsevier, vol. 234(C).
- Yi, Ping & Liu, Hao & Liu, Shengxing & Han, Yang & Zhang, Xianbo & Yang, Guang & Wang, Chunting & Kader, Abdoul & Qiang, Xiaoman & Wang, Jinglei, 2024. "Assessment for aerodynamic and canopy resistances in simulating latent heat flux of Venlo-type greenhouse tomato," Agricultural Water Management, Elsevier, vol. 297(C).
- Yan, Haofang & Yu, Jianjun & Zhang, Chuan & Wang, Guoqing & Huang, Song & Ma, Jiamin, 2021. "Comparison of two canopy resistance models to estimate evapotranspiration for tea and wheat in southeast China," Agricultural Water Management, Elsevier, vol. 245(C).
- Gong, Xuewen & Qiu, Rangjian & Zhang, Baozhong & Wang, Shunsheng & Ge, Jiankun & Gao, Shikai & Yang, Zaiqiang, 2021. "Energy budget for tomato plants grown in a greenhouse in northern China," Agricultural Water Management, Elsevier, vol. 255(C).
- Yan, Haofang & Li, Mi & Zhang, Chuan & Zhang, Jianyun & Wang, Guoqing & Yu, Jianjun & Ma, Jiamin & Zhao, Shuang, 2022. "Comparison of evapotranspiration upscaling methods from instantaneous to daytime scale for tea and wheat in southeast China," Agricultural Water Management, Elsevier, vol. 264(C).
- Liu, Hao & Li, Huanhuan & Ning, Huifeng & Zhang, Xiaoxian & Li, Shuang & Pang, Jie & Wang, Guangshuai & Sun, Jingsheng, 2019. "Optimizing irrigation frequency and amount to balance yield, fruit quality and water use efficiency of greenhouse tomato," Agricultural Water Management, Elsevier, vol. 226(C).
- Qu, Feng & Zhang, Qi & Jiang, Zhaoxi & Zhang, Caihong & Zhang, Zhi & Hu, Xiaohui, 2022. "Optimizing irrigation and fertilization frequency for greenhouse cucumber grown at different air temperatures using a comprehensive evaluation model," Agricultural Water Management, Elsevier, vol. 273(C).
- Gong, Xuewen & Qiu, Rangjian & Sun, Jingsheng & Ge, Jiankun & Li, Yanbin & Wang, Shunsheng, 2020. "Evapotranspiration and crop coefficient of tomato grown in a solar greenhouse under full and deficit irrigation," Agricultural Water Management, Elsevier, vol. 235(C).
- Huang, Song & Yan, Haofang & Zhang, Chuan & Wang, Guoqing & Acquah, Samuel Joe & Yu, Jianjun & Li, Lanlan & Ma, Jiamin & Opoku Darko, Ransford, 2020. "Modeling evapotranspiration for cucumber plants based on the Shuttleworth-Wallace model in a Venlo-type greenhouse," Agricultural Water Management, Elsevier, vol. 228(C).
- Haofang Yan & Song Huang & Jianyun Zhang & Chuan Zhang & Guoqing Wang & Lanlan Li & Shuang Zhao & Mi Li & Baoshan Zhao, 2022. "Comparison of Shuttleworth–Wallace and Dual Crop Coefficient Method for Estimating Evapotranspiration of a Tea Field in Southeast China," Agriculture, MDPI, vol. 12(9), pages 1-17, September.
- Yan, Haofang & Deng, Shuaishuai & Zhang, Chuan & Wang, Guoqing & Zhao, Shuang & Li, Mi & Liang, Shaowei & Jiang, Jianhui & Zhou, Yudong, 2023. "Determination of energy partition of a cucumber grown Venlo-type greenhouse in southeast China," Agricultural Water Management, Elsevier, vol. 276(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Mota, M. & Wang, T., 2021. "Prediction of crop coefficients from fraction of ground cover and height: Practical application to vegetable, field and fruit crops with focus on parameterization," Agricultural Water Management, Elsevier, vol. 252(C).
- Luis Santos Pereira, 2017. "Water, Agriculture and Food: Challenges and Issues," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2985-2999, August.
- Qiu, Rangjian & Li, Longan & Wu, Lifeng & Agathokleous, Evgenios & Liu, Chunwei & Zhang, Baozhong & Luo, Yufeng & Sun, Shanlei, 2022. "Modeling daily global solar radiation using only temperature data: Past, development, and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
- Paredes, P. & Pereira, L.S. & Almorox, J. & Darouich, H., 2020. "Reference grass evapotranspiration with reduced data sets: Parameterization of the FAO Penman-Monteith temperature approach and the Hargeaves-Samani equation using local climatic variables," Agricultural Water Management, Elsevier, vol. 240(C).
- Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Wang, T. & López-Urrea, R. & Cancela, J.J. & Allen, R.G., 2020. "Prediction of crop coefficients from fraction of ground cover and height. Background and validation using ground and remote sensing data," Agricultural Water Management, Elsevier, vol. 241(C).
- Paredes, P. & Pereira, L.S., 2019. "Computing FAO56 reference grass evapotranspiration PM-ETo from temperature with focus on solar radiation," Agricultural Water Management, Elsevier, vol. 215(C), pages 86-102.
- Pereira, L.S. & Paredes, P. & Jovanovic, N., 2020. "Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach," Agricultural Water Management, Elsevier, vol. 241(C).
- Xu, Junzeng & Liu, Xiaoyin & Yang, Shihong & Qi, Zhiming & Wang, Yijiang, 2017. "Modeling rice evapotranspiration under water-saving irrigation by calibrating canopy resistance model parameters in the Penman-Monteith equation," Agricultural Water Management, Elsevier, vol. 182(C), pages 55-66.
- Darouich, Hanaa & Karfoul, Razan & Ramos, Tiago B. & Moustafa, Ali & Shaheen, Baraa & Pereira, Luis S., 2021. "Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region," Agricultural Water Management, Elsevier, vol. 255(C).
- Gao, Yang & Yang, Linlin & Shen, Xiaojun & Li, Xinqiang & Sun, Jingsheng & Duan, Aiwang & Wu, Laosheng, 2014. "Winter wheat with subsurface drip irrigation (SDI): Crop coefficients, water-use estimates, and effects of SDI on grain yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 146(C), pages 1-10.
- Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
- Ngouajio, Mathieu & Wang, Guangyao & Goldy, Ronald, 2007. "Withholding of drip irrigation between transplanting and flowering increases the yield of field-grown tomato under plastic mulch," Agricultural Water Management, Elsevier, vol. 87(3), pages 285-291, February.
- Rosa, R.D. & Ramos, T.B. & Pereira, L.S., 2016. "The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 177(C), pages 77-94.
- Cao, Jingjing & Tan, Junwei & Cui, Yuanlai & Luo, Yufeng, 2019. "Irrigation scheduling of paddy rice using short-term weather forecast data," Agricultural Water Management, Elsevier, vol. 213(C), pages 714-723.
- Gonçalo C. Rodrigues & Ricardo P. Braga, 2021. "Estimation of Reference Evapotranspiration during the Irrigation Season Using Nine Temperature-Based Methods in a Hot-Summer Mediterranean Climate," Agriculture, MDPI, vol. 11(2), pages 1-13, February.
- Panagiotis Christias & Ioannis N. Daliakopoulos & Thrassyvoulos Manios & Mariana Mocanu, 2020. "Comparison of Three Computational Approaches for Tree Crop Irrigation Decision Support," Mathematics, MDPI, vol. 8(5), pages 1-26, May.
- Chintala, Syam & Karimindla, Arun Rao & Kambhammettu, BVN P., 2024. "Scaling relations between leaf and plant water use efficiencies in rainfed Cotton," Agricultural Water Management, Elsevier, vol. 292(C).
- Gong, Daozhi & Mei, Xurong & Hao, Weiping & Wang, Hanbo & Caylor, Kelly K., 2017. "Comparison of ET partitioning and crop coefficients between partial plastic mulched and non-mulched maize fields," Agricultural Water Management, Elsevier, vol. 181(C), pages 23-34.
- Choudhury, B.U. & Singh, Anil Kumar & Pradhan, S., 2013. "Estimation of crop coefficients of dry-seeded irrigated rice–wheat rotation on raised beds by field water balance method in the Indo-Gangetic plains, India," Agricultural Water Management, Elsevier, vol. 123(C), pages 20-31.
- Althoff, Daniel & Filgueiras, Roberto & Dias, Santos Henrique Brant & Rodrigues, Lineu Neiva, 2019. "Impact of sum-of-hourly and daily timesteps in the computations of reference evapotranspiration across the Brazilian territory," Agricultural Water Management, Elsevier, vol. 226(C).
More about this item
Keywords
Canopy resistance; Energy balance; Latent heat flux; Spring; Autumn;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:217:y:2019:i:c:p:201-211. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.