IDEAS home Printed from https://ideas.repec.org/a/caa/jnlpse/v63y2017i10id568-2017-pse.html
   My bibliography  Save this article

Leaf area index assessment for tomato and cucumber growing period under different water treatments

Author

Listed:
  • Shaikh Abdullah Al MAMUN HOSSAIN

    (College of Water Conservancy, Shenyang Agricultural University, Shenyang, P.R. China
    Department of Agricultural Engineering, Patuakhali Science and Technology University, Dumki, Patuakhali, Bangladesh)

  • Lixue WANG

    (College of Water Conservancy, Shenyang Agricultural University, Shenyang, P.R. China)

  • Taotao CHEN

    (College of Water Conservancy, Shenyang Agricultural University, Shenyang, P.R. China)

  • Zhenhua LI

    (College of Water Conservancy, Shenyang Agricultural University, Shenyang, P.R. China)

Abstract

The aim of this study was to assess the leaf area index (LAI) of tomato and cucumber using an AccuPAR-LP-80-ceptometer to find the influence of irrigation. LAI was also determined by destructive sampling for comparison. The research was conducted at the Liaoning Water Conservancy Institute, North China in 2016. A randomized block design was used to test the influence of four treatments corresponding to field water capacity. Full irrigation (W1.0), 15% (W0.85), 25% (W0.75) and 35% (W0.65) water deficit were applied using the drip system. Regression model was developed to estimate LAI in response to irrigation. The results show that there is no difference between the two methods. The highest LAI obtained for tomato and cucumber was 5.21 and 3.21 m2/m2, respectively, with W0.85 at 70-days after transplanting, which corresponds with destructive results. This result was found 11% higher and equal compared with W1.0 for tomato (4.62) and cucumber (3.21), respectively. For both crops, LAI was found significantly influenced at 50-days after transplanting. It also indicated that LAI significantly influenced (by 15%) deficit irrigation for both crops and methods that achieved the highest yield. The predicted LAI was obtained best-fitting with the observed values, which indicated that the AccuPAR-ceptometer is suitable to be used.

Suggested Citation

  • Shaikh Abdullah Al MAMUN HOSSAIN & Lixue WANG & Taotao CHEN & Zhenhua LI, 2017. "Leaf area index assessment for tomato and cucumber growing period under different water treatments," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 63(10), pages 461-467.
  • Handle: RePEc:caa:jnlpse:v:63:y:2017:i:10:id:568-2017-pse
    DOI: 10.17221/568/2017-PSE
    as

    Download full text from publisher

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/568/2017-PSE.html
    Download Restriction: free of charge

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/568/2017-PSE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/568/2017-PSE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harmanto & Salokhe, V.M. & Babel, M.S. & Tantau, H.J., 2005. "Water requirement of drip irrigated tomatoes grown in greenhouse in tropical environment," Agricultural Water Management, Elsevier, vol. 71(3), pages 225-242, February.
    2. Du, Shaoqing & Kang, Shaozhong & Li, Fusheng & Du, Taisheng, 2017. "Water use efficiency is improved by alternate partial root-zone irrigation of apple in arid northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 184-192.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anh Tuan LE & Zoltán PÉK & Sándor TAKÁCS & András NEMÉNYI & Lajos HELYES, 2018. "The effect of plant growth-promoting rhizobacteria on yield, water use efficiency and Brix Degree of processing tomato," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(11), pages 523-529.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roonjho, Shaheen Javed & Kamal, Rowshon Md & Roonjho, Abdul Rehman, 2022. "Modeling capillary wick irrigation system for greenhouse crop production," Agricultural Water Management, Elsevier, vol. 274(C).
    2. Ngouajio, Mathieu & Wang, Guangyao & Goldy, Ronald, 2007. "Withholding of drip irrigation between transplanting and flowering increases the yield of field-grown tomato under plastic mulch," Agricultural Water Management, Elsevier, vol. 87(3), pages 285-291, February.
    3. Mashaly, Ahmed F. & Alazba, A.A. & Al-Awaadh, A.M. & Mattar, Mohamed A., 2015. "Area determination of solar desalination system for irrigating crops in greenhouses using different quality feed water," Agricultural Water Management, Elsevier, vol. 154(C), pages 1-10.
    4. Indranil Samui & Milan Skalicky & Sukamal Sarkar & Koushik Brahmachari & Sayan Sau & Krishnendu Ray & Akbar Hossain & Argha Ghosh & Manoj Kumar Nanda & Richard W. Bell & Mohammed Mainuddin & Marian Br, 2020. "Yield Response, Nutritional Quality and Water Productivity of Tomato ( Solanum lycopersicum L.) are Influenced by Drip Irrigation and Straw Mulch in the Coastal Saline Ecosystem of Ganges Delta, India," Sustainability, MDPI, vol. 12(17), pages 1-21, August.
    5. Lin, Dong & Zhang, Lijun & Xia, Xiaohua, 2021. "Model predictive control of a Venlo-type greenhouse system considering electrical energy, water and carbon dioxide consumption," Applied Energy, Elsevier, vol. 298(C).
    6. Shih-Lun Fang & Ting-Jung Chang & Yuan-Kai Tu & Han-Wei Chen & Min-Hwi Yao & Bo-Jein Kuo, 2022. "Plant-Response-Based Control Strategy for Irrigation and Environmental Controls for Greenhouse Tomato Seedling Cultivation," Agriculture, MDPI, vol. 12(5), pages 1-17, April.
    7. Tahiri, Adel Zeggaf & Anyoji, H. & Yasuda, H., 2006. "Fixed and variable light extinction coefficients for estimating plant transpiration and soil evaporation under irrigated maize," Agricultural Water Management, Elsevier, vol. 84(1-2), pages 186-192, July.
    8. Ines Toumi & Mohamed Ghrab & Olfa Zarrouk & Kamel Nagaz, 2024. "Impact of Deficit Irrigation Strategies Using Saline Water on Soil and Peach Tree Yield in an Arid Region of Tunisia," Agriculture, MDPI, vol. 14(3), pages 1-14, February.
    9. Du, Shaoqing & Tong, Ling & Zhang, Xiaotao & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Signal intensity based on maximum daily stem shrinkage can reflect the water status of apple trees under alternate partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 190(C), pages 21-30.
    10. Wang, Jingwei & Li, Yuan & Niu, Wenquan, 2021. "Effect of alternating drip irrigation on soil gas emissions, microbial community composition, and root–soil interactions," Agricultural Water Management, Elsevier, vol. 256(C).
    11. Guizani, Monia & Dabbou, Samia & Maatallah, Samira & Montevecchi, Giuseppe & Hajlaoui, Hichem & Rezig, Mourad & Helal, Ahmed Noureddine & Kilani-Jaziri, Soumaya, 2019. "Physiological responses and fruit quality of four peach cultivars under sustained and cyclic deficit irrigation in center-west of Tunisia," Agricultural Water Management, Elsevier, vol. 217(C), pages 81-97.
    12. Jeet Chand & Guna Hewa & Ali Hassanli & Baden Myers, 2020. "Evaluation of Deficit Irrigation and Water Quality on Production and Water Productivity of Tomato in Greenhouse," Agriculture, MDPI, vol. 10(7), pages 1-18, July.
    13. Zhang, Junwei & Xiang, Lingxiao & Zhu, Chenxi & Li, Wuqiang & Jing, Dan & Zhang, Lili & Liu, Yong & Li, Tianlai & Li, Jianming, 2023. "Evaluating the irrigation schedules of greenhouse tomato by simulating soil water balance under drip irrigation," Agricultural Water Management, Elsevier, vol. 283(C).
    14. Kuşçu, Hayrettin & Turhan, Ahmet & Demir, Ali Osman, 2014. "The response of processing tomato to deficit irrigation at various phenological stages in a sub-humid environment," Agricultural Water Management, Elsevier, vol. 133(C), pages 92-103.
    15. Fullana-Pericàs, Mateu & Conesa, Miquel À. & Gago, Jorge & Ribas-Carbó, Miquel & Galmés, Jeroni, 2022. "High-throughput phenotyping of a large tomato collection under water deficit: Combining UAVs’ remote sensing with conventional leaf-level physiologic and agronomic measurements," Agricultural Water Management, Elsevier, vol. 260(C).
    16. Mohammad Nabil Elnesr & Abdurrahman Ali Alazba & Assem Ibrahim Zein El-Abedein & Mahmoud Maher El-Adl, 2015. "Evaluating the Effect of Three Water Management Techniques on Tomato Crop," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-17, June.
    17. Liang, Yonghui & Wen, Yue & Meng, Yu & Li, Haiqiang & Song, Libing & Zhang, Jinzhu & Ma, Zhanli & Han, Yue & Wang, Zhenhua, 2024. "Effects of biodegradable film types and drip irrigation amounts on maize growth and field carbon sequestration in arid northwest China," Agricultural Water Management, Elsevier, vol. 299(C).
    18. Di Wang, & Wang, Li, 2023. "Characteristics of soil evaporation at two stages of growth in apple orchards with different ages in a semi-humid region," Agricultural Water Management, Elsevier, vol. 280(C).
    19. Rahil, M.H. & Qanadillo, A., 2015. "Effects of different irrigation regimes on yield and water use efficiency of cucumber crop," Agricultural Water Management, Elsevier, vol. 148(C), pages 10-15.
    20. Phogat, V. & Mallants, Dirk & Cox, J.W. & Šimůnek, J. & Oliver, D.P. & Awad, J., 2020. "Management of soil salinity associated with irrigation of protected crops," Agricultural Water Management, Elsevier, vol. 227(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlpse:v:63:y:2017:i:10:id:568-2017-pse. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.