IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v152y2015icp31-40.html
   My bibliography  Save this article

Sediment-assisted nutrient transfer from a small, no-till, tile drained watershed in Southwestern Ontario, Canada

Author

Listed:
  • Molder, Bryce
  • Cockburn, Jaclyn
  • Berg, Aaron
  • Lindsay, John
  • Woodrow, Kathryn

Abstract

Sediment and nutrient exports were evaluated in a small agriculture-dominated watershed that drains into Rondeau Bay, on the northern shore of Lake Erie in Southwestern Ontario, Canada. The following hypothesis was tested: the quantity and quality of suspended sediment yields in agricultural settings controls nutrient transfer from surface runoff. Stream discharge and water quality were monitored at three locations along a tributary reach within the Rondeau Bay basin during the 2013 growing-harvest season (May–October). Water samples were analyzed in the laboratory for suspended sediment concentration, particle size, and sediment-assisted nitrogen and phosphorus content. Estimated total sediment yield over the 6-month monitoring period was ∼50t (0.13tha−1). A mid-season change in contributing sediment sources was inferred based on the observations of suspended sediment transfer and particle size following a ∼92mm rainfall event. This extreme runoff event marked a change in the discharge-suspended sediment response seen in the catchment, which included a July–September abrupt decrease in suspended sediment concentration and a coincident increase in fine-grained particle abundance. Clockwise event hysteresis suggested adjacent and/or likely channel derived sediment sources. Finally, there was a positive relationship between suspended sediment concentration and phosphorus (R2=0.86, n=63) and orthophosphate (R2=0.75, n=63). Estimated nutrient concentrations exceeded provincial load guidelines, which suggests that present land management efforts to minimize nutrient loading via surface runoff require further evaluation. This research concludes that agricultural-based nutrient loading into Lake Erie is sediment-assisted and that this sediment potentially derives from in-channel and tile drain sources. The findings have important implications for future soil loss and thus nutrient loading from agricultural settings, especially during extreme events.

Suggested Citation

  • Molder, Bryce & Cockburn, Jaclyn & Berg, Aaron & Lindsay, John & Woodrow, Kathryn, 2015. "Sediment-assisted nutrient transfer from a small, no-till, tile drained watershed in Southwestern Ontario, Canada," Agricultural Water Management, Elsevier, vol. 152(C), pages 31-40.
  • Handle: RePEc:eee:agiwat:v:152:y:2015:i:c:p:31-40
    DOI: 10.1016/j.agwat.2014.12.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377414003965
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2014.12.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Macrae, M.L. & English, M.C. & Schiff, S.L. & Stone, M., 2007. "Intra-annual variability in the contribution of tile drains to basin discharge and phosphorus export in a first-order agricultural catchment," Agricultural Water Management, Elsevier, vol. 92(3), pages 171-182, September.
    2. Singh, R. & Helmers, M.J. & Crumpton, W.G. & Lemke, D.W., 2007. "Predicting effects of drainage water management in Iowa's subsurface drained landscapes," Agricultural Water Management, Elsevier, vol. 92(3), pages 162-170, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiayu Peng & Chunling Jin & Yue Wu & Zeying Hou & Sijia Gao & Zhaosheng Chu & Binghui Zheng, 2022. "Modeling Non-Point Source Nutrient Loads with Different Cropping Systems in an Agricultural Lake Watershed in Southwestern China: From Field to Watershed Scale," Mathematics, MDPI, vol. 10(21), pages 1-18, October.
    2. Nazari, Saeid & Ford, William I. & King, Kevin W., 2022. "Impact of flow pathway and source water connectivity on subsurface sediment and particulate phosphorus dynamics in tile-drained agroecosystems," Agricultural Water Management, Elsevier, vol. 269(C).
    3. Chen, Lina & Zhao, Zilong & Li, Jiang & Wang, Haiming & Guo, Guomian & Wu, Wenbo, 2022. "Effects of muddy water irrigation with different sediment particle sizes and sediment concentrations on soil microbial communities in the Yellow River Basin of China," Agricultural Water Management, Elsevier, vol. 270(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shedekar, Vinayak S. & King, Kevin W. & Fausey, Norman R. & Islam, Khandakar R. & Soboyejo, Alfred B.O. & Kalcic, Margaret M. & Brown, Larry C., 2021. "Exploring the effectiveness of drainage water management on water budgets and nitrate loss using three evaluation approaches," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Bou Lahdou, Guy & Bowling, Laura & Frankenberger, Jane & Kladivko, Eileen, 2019. "Hydrologic controls of controlled and free draining subsurface drainage systems," Agricultural Water Management, Elsevier, vol. 213(C), pages 605-615.
    3. Allred, Barry & Martinez, Luis & Khanal, Sami & Sawyer, Audrey H. & Rouse, Greg, 2022. "Subsurface drainage outlet detection in ditches and streams with UAV thermal infrared imagery: Preliminary research," Agricultural Water Management, Elsevier, vol. 271(C).
    4. Xu Dou & Haibin Shi & Ruiping Li & Qingfeng Miao & Feng Tian & Dandan Yu & Liying Zhou & Bo Wang, 2021. "Effects of Controlled Drainage on the Content Change and Migration of Moisture, Nutrients, and Salts in Soil and the Yield of Oilseed Sunflower in the Hetao Irrigation District," Sustainability, MDPI, vol. 13(17), pages 1-19, September.
    5. Williams, M.R. & King, K.W. & Fausey, N.R., 2015. "Contribution of tile drains to basin discharge and nitrogen export in a headwater agricultural watershed," Agricultural Water Management, Elsevier, vol. 158(C), pages 42-50.
    6. Revuelta-Acosta, J.D. & Flanagan, D.C. & Engel, B.A. & King, K.W., 2021. "Improvement of the Water Erosion Prediction Project (WEPP) model for quantifying field scale subsurface drainage discharge," Agricultural Water Management, Elsevier, vol. 244(C).
    7. Nausch, Monika & Woelk, Jana & Kahle, Petra & Nausch, Günther & Leipe, Thomas & Lennartz, Bernd, 2017. "Phosphorus fractions in discharges from artificially drained lowland catchments (Warnow River, Baltic Sea)," Agricultural Water Management, Elsevier, vol. 187(C), pages 77-87.
    8. Bonaiti, Gabriele & Borin, Maurizio, 2010. "Efficiency of controlled drainage and subirrigation in reducing nitrogen losses from agricultural fields," Agricultural Water Management, Elsevier, vol. 98(2), pages 343-352, December.
    9. Golmohammadi, Golmar & Rudra, Ramesh & Prasher, Shiv & Madani, Ali & Youssef, Mohamed & Goel, Pradeep & Mohammadi, Kourosh, 2017. "Impact of tile drainage on water budget and spatial distribution of sediment generating areas in an agricultural watershed," Agricultural Water Management, Elsevier, vol. 184(C), pages 124-134.
    10. Ale, S. & Bowling, L.C. & Owens, P.R. & Brouder, S.M. & Frankenberger, J.R., 2012. "Development and application of a distributed modeling approach to assess the watershed-scale impact of drainage water management," Agricultural Water Management, Elsevier, vol. 107(C), pages 23-33.
    11. Williams, Mark R. & King, Kevin W. & Fausey, Norman R., 2017. "Dissolved organic carbon loading from the field to watershed scale in tile-drained landscapes," Agricultural Water Management, Elsevier, vol. 192(C), pages 159-169.
    12. Ghane, Ehsan & Askar, Manal H., 2021. "Predicting the effect of drain depth on profitability and hydrology of subsurface drainage systems across the eastern USA," Agricultural Water Management, Elsevier, vol. 258(C).
    13. Mariusz Sojka & Michał Kozłowski & Rafał Stasik & Michał Napierała & Barbara Kęsicka & Rafał Wróżyński & Joanna Jaskuła & Daniel Liberacki & Jerzy Bykowski, 2019. "Sustainable Water Management in Agriculture—The Impact of Drainage Water Management on Groundwater Table Dynamics and Subsurface Outflow," Sustainability, MDPI, vol. 11(15), pages 1-18, August.
    14. Ale, S. & Bowling, L.C. & Brouder, S.M. & Frankenberger, J.R. & Youssef, M.A., 2009. "Simulated effect of drainage water management operational strategy on hydrology and crop yield for Drummer soil in the Midwestern United States," Agricultural Water Management, Elsevier, vol. 96(4), pages 653-665, April.
    15. Schilling, Keith E. & Streeter, Matthew T. & Vogelgesang, Jason & Jones, Christopher S. & Seeman, Anthony, 2020. "Subsurface nutrient export from a cropped field to an agricultural stream: Implications for targeting edge-of-field practices," Agricultural Water Management, Elsevier, vol. 241(C).
    16. Yasir Abduljaleel & Ahmed Awad & Nadhir Al-Ansari & Ali Salem & Abdelazim Negm & Mohamed Elsayed Gabr, 2023. "Assessment of Subsurface Drainage Strategies Using DRAINMOD Model for Sustainable Agriculture: A Review," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    17. Luo, W. & Sands, G.R. & Youssef, M. & Strock, J.S. & Song, I. & Canelon, D., 2010. "Modeling the impact of alternative drainage practices in the northern Corn-belt with DRAINMOD-NII," Agricultural Water Management, Elsevier, vol. 97(3), pages 389-398, March.
    18. Bullerjahn, George S. & McKay, Robert M. & Davis, Timothy W. & Baker, David B. & Boyer, Gregory L. & D'Anglada, Leslie V. & Doucette, Gregory J. & Ho, Jeff C. & Irwin, Elena G. & Kling, Catherine L. &, 2016. "Global solutions to regional problems: Collecting global expertise to address the problem of harmful cyanobacterial blooms. A Lake Erie case study," ISU General Staff Papers 201601010800001134, Iowa State University, Department of Economics.
    19. Ross, Jared A. & Herbert, Matthew E. & Sowa, Scott P. & Frankenberger, Jane R. & King, Kevin W. & Christopher, Sheila F. & Tank, Jennifer L. & Arnold, Jeffrey G. & White, Mike J. & Yen, Haw, 2016. "A synthesis and comparative evaluation of factors influencing the effectiveness of drainage water management," Agricultural Water Management, Elsevier, vol. 178(C), pages 366-376.
    20. Upadhyay, P. & Pruski, L.O.S. & Kaleita, A.L. & Soupir, M.L., 2018. "Evaluation of AnnAGNPS for simulating the inundation of drained and farmed potholes in the Prairie Pothole Region of Iowa," Agricultural Water Management, Elsevier, vol. 204(C), pages 38-46.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:152:y:2015:i:c:p:31-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.