IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v98y2010i2p343-352.html
   My bibliography  Save this article

Efficiency of controlled drainage and subirrigation in reducing nitrogen losses from agricultural fields

Author

Listed:
  • Bonaiti, Gabriele
  • Borin, Maurizio

Abstract

In northeast Italy, a regimen of controlled drainage in winter and subirrigation in summer was tested as a strategy for continuous water table management with the benefits of optimizing water use and reducing unnecessary drainage and nitrogen losses from agricultural fields. To study the feasibility and performance of water table management, an experimental facility was set up in 1996 to reproduce a hypothetical 6-ha agricultural basin with different land drainage systems existing in the region. Four treatments were compared: open ditches with free drainage and no irrigation (O), open ditches with controlled drainage and subirrigation (O-CI), subsurface corrugated drains with free drainage and no irrigation (S), subsurface corrugated drains with controlled drainage and subirrigation (S-CI). As typically in the region free drainage ditches were spaced 30 m apart, and subsurface corrugated drains were spaced 8 m apart. Data were collected from 1997 to 2003 on water table depth, drained volume, nitrate-nitrogen concentration in the drainage water, and nitrate-nitrogen concentration in the groundwater at various depths up to 3 m. Subsurface corrugated drains with free drainage (S) gave the highest measured drainage volume of the four regimes, discharging, on average, more than 50% of annual rainfall, the second-highest concentration of nitrate-nitrogen in the drainage water, and the highest nitrate-nitrogen losses at 236 k ha-1. Open ditches with free drainage (O) showed 18% drainage return of rainfall, relatively low concentration of nitrate-nitrogen in the drainage water, the highest nitrate-nitrogen concentration in the shallow groundwater, and 51 kg ha-1 nitrate-nitrogen losses. Both treatments with controlled drainage and subirrigation (O-CI and S-CI) showed annual rainfall drainage of approximately 10%. O-CI showed the lowest nitrate-nitrogen concentration in the drainage water, and the lowest nitrogen losses (15 kg ha-1). S-CI showed the highest nitrate-nitrogen concentration in the drainage water, and 70 kg ha-1 nitrate-nitrogen losses. Reduced drained volumes resulted from the combined effects of reduced peak flow and reduced number of days with drainage. A linear relationship between daily cumulative nitrate-nitrogen losses and daily cumulative drainage volumes was found, with slopes of 0.16, 0.12, 0.07, and 0.04 kg ha-1 of nitrate-nitrogen lost per mm of drained water in S-CI, S, O, and O-CI respectively. These data suggest that controlled drainage and subirrigation can be applied at farm scale in northeast Italy, with advantages for water conservation.

Suggested Citation

  • Bonaiti, Gabriele & Borin, Maurizio, 2010. "Efficiency of controlled drainage and subirrigation in reducing nitrogen losses from agricultural fields," Agricultural Water Management, Elsevier, vol. 98(2), pages 343-352, December.
  • Handle: RePEc:eee:agiwat:v:98:y:2010:i:2:p:343-352
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(10)00313-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Singh, R. & Helmers, M.J. & Crumpton, W.G. & Lemke, D.W., 2007. "Predicting effects of drainage water management in Iowa's subsurface drained landscapes," Agricultural Water Management, Elsevier, vol. 92(3), pages 162-170, September.
    2. Qadir, M. & Sharma, B.R. & Bruggeman, A. & Choukr-Allah, R. & Karajeh, F., 2007. "Non-conventional water resources and opportunities for water augmentation to achieve food security in water scarce countries," Agricultural Water Management, Elsevier, vol. 87(1), pages 2-22, January.
    3. Sharma, Bharat R. & Minhas, P.S., 2005. "Strategies for managing saline/alkali waters for sustainable agricultural production in South Asia," Agricultural Water Management, Elsevier, vol. 78(1-2), pages 136-151, September.
    4. Borin, Maurizio & Morari, Francesco & Bonaiti, Gabriele & Paasch, Mary & Wayne Skaggs, R., 2000. "Analysis of DRAINMOD performances with different detail of soil input data in the Veneto region of Italy," Agricultural Water Management, Elsevier, vol. 42(3), pages 259-272, January.
    5. Watanabe, Hirozumi & Nguyen, My Hoang Tra & Souphasay, Komany & Vu, Son Hong & Phong, Thai Khanh & Tournebize, Julien & Ishihara, Satoru, 2007. "Effect of water management practice on pesticide behavior in paddy water," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 132-140, March.
    6. Wesstrom, Ingrid & Messing, Ingmar, 2007. "Effects of controlled drainage on N and P losses and N dynamics in a loamy sand with spring crops," Agricultural Water Management, Elsevier, vol. 87(3), pages 229-240, February.
    7. Yang, Chun-Chieh & Prasher, Shiv O. & Wang, Shaoli & Kim, Seung Hyun & Tan, Chin S. & Drury, Craig & Patel, Ramanbhai M., 2007. "Simulation of nitrate-N movement in southern Ontario, Canada with DRAINMOD-N," Agricultural Water Management, Elsevier, vol. 87(3), pages 299-306, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tolomio, Massimo & Borin, Maurizio, 2018. "Water table management to save water and reduce nutrient losses from agricultural fields: 6 years of experience in North-Eastern Italy," Agricultural Water Management, Elsevier, vol. 201(C), pages 1-10.
    2. Deichmann, Majken M. & Andersen, Mathias N. & Thomsen, Ingrid K. & Børgesen, Christen D., 2019. "Impacts of controlled drainage during winter on the physiology and yield of winter wheat in Denmark," Agricultural Water Management, Elsevier, vol. 216(C), pages 118-126.
    3. Guo, Chenyao & Yao, Chenzhi & Wu, Jingwei & Qin, Shuai & Yang, Haoyu & Li, Hang & Mao, Jun, 2024. "Field and numerical experiments of subsurface drainage systems in saline and low-permeability interlayered fields in arid regions," Agricultural Water Management, Elsevier, vol. 300(C).
    4. Jouni, Hamidreza Javani & Liaghat, Abdolmajid & Hassanoghli, Alireza & Henk, Ritzema, 2018. "Managing controlled drainage in irrigated farmers’ fields: A case study in the Moghan plain, Iran," Agricultural Water Management, Elsevier, vol. 208(C), pages 393-405.
    5. El-Ghannam, Mohamed K. & Aiad, Mahmoud. A. & Abdallah, Ahmed M., 2021. "Irrigation efficiency, drain outflow and yield responses to drain depth in the Nile delta clay soil, Egypt," Agricultural Water Management, Elsevier, vol. 246(C).
    6. Jung, Jae-Woon & Yoon, Kwang-Sik & Choi, Dong-Ho & Lim, Sang-Sun & Choi, Woo-Jung & Choi, Soo-Myung & Lim, Byung-Jin, 2012. "Water management practices and SCS curve numbers of paddy fields equipped with surface drainage pipes," Agricultural Water Management, Elsevier, vol. 110(C), pages 78-83.
    7. Tang, Darrell W.S. & Bartholomeus, Ruud P. & Ritsema, Coen J., 2024. "Wastewater irrigation beneath the water table: analytical model of crop contamination risks," Agricultural Water Management, Elsevier, vol. 298(C).
    8. Wang, Zhiyu & Shao, Guangcheng & Lu, Jia & Zhang, Kun & Gao, Yang & Ding, Jihui, 2020. "Effects of controlled drainage on crop yield, drainage water quantity and quality: A meta-analysis," Agricultural Water Management, Elsevier, vol. 239(C).
    9. Jiang, Weilong & Yang, Fang & Wang, Xihuan & Miao, Qingfeng & Ji, Meicheng & Pan, Ting & Wang, Qianqian & Han, Zhiming & Feng, Weiying & Liao, Haiqing, 2024. "Improved determination of nitrate isotopes in irrigated agricultural areas and Bayesian mixing model quantification of nitrate sources and fate," Agricultural Water Management, Elsevier, vol. 298(C).
    10. Lavaire, Tito & Gentry, Lowell E. & David, Mark B. & Cooke, Richard A., 2017. "Fate of water and nitrate using drainage water management on tile systems in east-central Illinois," Agricultural Water Management, Elsevier, vol. 191(C), pages 218-228.
    11. Tolomio, Massimo & Borin, Maurizio, 2019. "Controlled drainage and crop production in a long-term experiment in North-Eastern Italy," Agricultural Water Management, Elsevier, vol. 222(C), pages 21-29.
    12. Bohne, B. & Storchenegger, I.J. & Widmoser, P., 2012. "An easy to use calculation method for weir operations in controlled drainage systems," Agricultural Water Management, Elsevier, vol. 109(C), pages 46-53.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jung, Jae-Woon & Yoon, Kwang-Sik & Choi, Dong-Ho & Lim, Sang-Sun & Choi, Woo-Jung & Choi, Soo-Myung & Lim, Byung-Jin, 2012. "Water management practices and SCS curve numbers of paddy fields equipped with surface drainage pipes," Agricultural Water Management, Elsevier, vol. 110(C), pages 78-83.
    2. Matinzadeh, Mohammad Mehdi & Abedi Koupai, Jahangir & Sadeghi-Lari, Adnan & Nozari, Hamed & Shayannejad, Mohammad, 2017. "Development of an innovative integrated model for the simulation of nitrogen dynamics in farmlands with drainage systems using the system dynamics approach," Ecological Modelling, Elsevier, vol. 347(C), pages 11-28.
    3. Xu Dou & Haibin Shi & Ruiping Li & Qingfeng Miao & Feng Tian & Dandan Yu & Liying Zhou & Bo Wang, 2021. "Effects of Controlled Drainage on the Content Change and Migration of Moisture, Nutrients, and Salts in Soil and the Yield of Oilseed Sunflower in the Hetao Irrigation District," Sustainability, MDPI, vol. 13(17), pages 1-19, September.
    4. Revuelta-Acosta, J.D. & Flanagan, D.C. & Engel, B.A. & King, K.W., 2021. "Improvement of the Water Erosion Prediction Project (WEPP) model for quantifying field scale subsurface drainage discharge," Agricultural Water Management, Elsevier, vol. 244(C).
    5. Tolomio, Massimo & Borin, Maurizio, 2018. "Water table management to save water and reduce nutrient losses from agricultural fields: 6 years of experience in North-Eastern Italy," Agricultural Water Management, Elsevier, vol. 201(C), pages 1-10.
    6. Ross, Jared A. & Herbert, Matthew E. & Sowa, Scott P. & Frankenberger, Jane R. & King, Kevin W. & Christopher, Sheila F. & Tank, Jennifer L. & Arnold, Jeffrey G. & White, Mike J. & Yen, Haw, 2016. "A synthesis and comparative evaluation of factors influencing the effectiveness of drainage water management," Agricultural Water Management, Elsevier, vol. 178(C), pages 366-376.
    7. Salazar, Osvaldo & Wesström, Ingrid & Youssef, Mohamed A. & Skaggs, R. Wayne & Joel, Abraham, 2009. "Evaluation of the DRAINMOD-N II model for predicting nitrogen losses in a loamy sand under cultivation in south-east Sweden," Agricultural Water Management, Elsevier, vol. 96(2), pages 267-281, February.
    8. Heidarpour, M. & Mostafazadeh-Fard, B. & Abedi Koupai, J. & Malekian, R., 2007. "The effects of treated wastewater on soil chemical properties using subsurface and surface irrigation methods," Agricultural Water Management, Elsevier, vol. 90(1-2), pages 87-94, May.
    9. Zvi Baum & Ruslana Rachel Palatnik & Iddo Kan & Mickey Rapaport-Rom, 2016. "Economic Impacts of Water Scarcity Under Diverse Water Salinities," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(01), pages 1-22, March.
    10. Rosa, R.D. & Ramos, T.B. & Pereira, L.S., 2016. "The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 177(C), pages 77-94.
    11. Singh, R.B. & Chauhan, C.P.S. & Minhas, P.S., 2009. "Water production functions of wheat (Triticum aestivum L.) irrigated with saline and alkali waters using double-line source sprinkler system," Agricultural Water Management, Elsevier, vol. 96(5), pages 736-744, May.
    12. Calzadilla, Alvaro & Rehdanz, Katrin & Tol, Richard S.J., 2008. "Water scarcity and the impact of improved irrigation management: A CGE analysis," Conference papers 331788, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    13. Zijie Sang & Ge Zhang & Haiqing Wang & Wangyang Zhang & Yuxiu Chen & Mingyang Han & Ke Yang, 2023. "Effective Solutions to Ecological and Water Environment Problems in the Sanjiang Plain: Utilization of Farmland Drainage Resources," Sustainability, MDPI, vol. 15(23), pages 1-14, November.
    14. Wang, X. & Mosley, C.T. & Frankenberger, J.R. & Kladivko, E.J., 2006. "Subsurface drain flow and crop yield predictions for different drain spacings using DRAINMOD," Agricultural Water Management, Elsevier, vol. 79(2), pages 113-136, January.
    15. Wichelns, Dennis & Oster, J.D., 2006. "Sustainable irrigation is necessary and achievable, but direct costs and environmental impacts can be substantial," Agricultural Water Management, Elsevier, vol. 86(1-2), pages 114-127, November.
    16. Bou Lahdou, Guy & Bowling, Laura & Frankenberger, Jane & Kladivko, Eileen, 2019. "Hydrologic controls of controlled and free draining subsurface drainage systems," Agricultural Water Management, Elsevier, vol. 213(C), pages 605-615.
    17. Luis Santos Pereira, 2017. "Water, Agriculture and Food: Challenges and Issues," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2985-2999, August.
    18. Moraetis, D. & Stamati, F.E. & Nikolaidis, N.P. & Kalogerakis, N., 2011. "Olive mill wastewater irrigation of maize: Impacts on soil and groundwater," Agricultural Water Management, Elsevier, vol. 98(7), pages 1125-1132, May.
    19. Wahhaj Ahmed & Ayman Alazazmeh & Muhammad Asif, 2022. "Energy and Water Saving Potential in Commercial Buildings: A Retrofit Case Study," Sustainability, MDPI, vol. 15(1), pages 1-17, December.
    20. Palatnik, Ruslana & Shechter, Mordechai, 2008. "Can Climate Change Mitigation Policy be Beneficial for the Israeli Economy? A Computable General Equilibrium Analysis," Conference papers 331792, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:98:y:2010:i:2:p:343-352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.