IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v178y2016icp366-376.html
   My bibliography  Save this article

A synthesis and comparative evaluation of factors influencing the effectiveness of drainage water management

Author

Listed:
  • Ross, Jared A.
  • Herbert, Matthew E.
  • Sowa, Scott P.
  • Frankenberger, Jane R.
  • King, Kevin W.
  • Christopher, Sheila F.
  • Tank, Jennifer L.
  • Arnold, Jeffrey G.
  • White, Mike J.
  • Yen, Haw

Abstract

Viable large-scale crop production in the United States requires artificial drainage in humid and poorly drained agricultural regions. Excess water removal is generally achieved by installing tile drains that export water to open ditches that eventually flow into streams. Drainage water management (DWM) is a conservation practice that allows farmers to artificially raise the outlet elevation of a field’s drain tile and can reduce nutrient loss during wet periods by storing more water in the field. We intended to assess the effectiveness of DWM to reduce drainage discharge and nutrient loads and additionally identify predictor variables that influence DWM effectiveness. We compared managed (i.e., DWM) and free draining records using paired t-tests, and identified factors associated with DWM effectiveness using a multiple linear regression approach. T-test results indicated that DWM was highly effective in reducing drainage water discharge and nutrient losses via drain tiles as tile discharge volumes were reduced on average 46%, while tile nitrate loads were reduced by 48%. In addition, total phosphorus and dissolved reactive phosphorus loads were reduced by 55% and 57%, respectively. Based on regression results, we found that several aspects of farm and tile drain management were associated with DWM effectiveness, while site specific landscape characteristics were less likely to predict effectiveness. While DWM is effective as a conservation practice to reduce discharges of water and nutrients from drain tiles, we also identified several knowledge gaps. Future research should investigate effects of DWM on water and nutrients lost in other pathways such as surface runoff, preferential flow, groundwater recharge and biological uptake, and also focus more attention on phosphorus as there is a paucity of research on this topic.

Suggested Citation

  • Ross, Jared A. & Herbert, Matthew E. & Sowa, Scott P. & Frankenberger, Jane R. & King, Kevin W. & Christopher, Sheila F. & Tank, Jennifer L. & Arnold, Jeffrey G. & White, Mike J. & Yen, Haw, 2016. "A synthesis and comparative evaluation of factors influencing the effectiveness of drainage water management," Agricultural Water Management, Elsevier, vol. 178(C), pages 366-376.
  • Handle: RePEc:eee:agiwat:v:178:y:2016:i:c:p:366-376
    DOI: 10.1016/j.agwat.2016.10.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377416303961
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2016.10.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ale, S. & Bowling, L.C. & Owens, P.R. & Brouder, S.M. & Frankenberger, J.R., 2012. "Development and application of a distributed modeling approach to assess the watershed-scale impact of drainage water management," Agricultural Water Management, Elsevier, vol. 107(C), pages 23-33.
    2. Luo, W. & Sands, G.R. & Youssef, M. & Strock, J.S. & Song, I. & Canelon, D., 2010. "Modeling the impact of alternative drainage practices in the northern Corn-belt with DRAINMOD-NII," Agricultural Water Management, Elsevier, vol. 97(3), pages 389-398, March.
    3. Ale, S. & Bowling, L.C. & Brouder, S.M. & Frankenberger, J.R. & Youssef, M.A., 2009. "Simulated effect of drainage water management operational strategy on hydrology and crop yield for Drummer soil in the Midwestern United States," Agricultural Water Management, Elsevier, vol. 96(4), pages 653-665, April.
    4. Breve, M. A. & Skaggs, R. W. & Parsons, J. E. & Gilliam, J. W., 1998. "Using the DRAINMOD-N model to study effects of drainage system design and management on crop productivity, profitability and NO3-N losses in drainage water," Agricultural Water Management, Elsevier, vol. 35(3), pages 227-243, January.
    5. Singh, R. & Helmers, M.J. & Crumpton, W.G. & Lemke, D.W., 2007. "Predicting effects of drainage water management in Iowa's subsurface drained landscapes," Agricultural Water Management, Elsevier, vol. 92(3), pages 162-170, September.
    6. Wesstrom, Ingrid & Messing, Ingmar, 2007. "Effects of controlled drainage on N and P losses and N dynamics in a loamy sand with spring crops," Agricultural Water Management, Elsevier, vol. 87(3), pages 229-240, February.
    7. Lalonde, V. & Madramootoo, C. A. & Trenholm, L. & Broughton, R. S., 1996. "Effects of controlled drainage on nitrate concentrations in subsurface drain discharge," Agricultural Water Management, Elsevier, vol. 29(2), pages 187-199, January.
    8. Hanson, J. D. & Ahuja, L. R. & Shaffer, M. D. & Rojas, K. W. & DeCoursey, D. G. & Farahani, H. & Johnson, K., 1998. "RZWQM: Simulating the effects of management on water quality and crop production," Agricultural Systems, Elsevier, vol. 57(2), pages 161-195, June.
    9. Williams, M.R. & King, K.W. & Fausey, N.R., 2015. "Drainage water management effects on tile discharge and water quality," Agricultural Water Management, Elsevier, vol. 148(C), pages 43-51.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lavaire, Tito & Gentry, Lowell E. & David, Mark B. & Cooke, Richard A., 2017. "Fate of water and nitrate using drainage water management on tile systems in east-central Illinois," Agricultural Water Management, Elsevier, vol. 191(C), pages 218-228.
    2. El-Ghannam, Mohamed K. & Aiad, Mahmoud. A. & Abdallah, Ahmed M., 2021. "Irrigation efficiency, drain outflow and yield responses to drain depth in the Nile delta clay soil, Egypt," Agricultural Water Management, Elsevier, vol. 246(C).
    3. Dou, Xu & Shi, Haibin & Li, Ruiping & Miao, Qingfeng & Yan, Jianwen & Tian, Feng & Wang, Bo, 2022. "Simulation and evaluation of soil water and salt transport under controlled subsurface drainage using HYDRUS-2D model," Agricultural Water Management, Elsevier, vol. 273(C).
    4. Shedekar, Vinayak S. & King, Kevin W. & Fausey, Norman R. & Islam, Khandakar R. & Soboyejo, Alfred B.O. & Kalcic, Margaret M. & Brown, Larry C., 2021. "Exploring the effectiveness of drainage water management on water budgets and nitrate loss using three evaluation approaches," Agricultural Water Management, Elsevier, vol. 243(C).
    5. Mariusz Sojka & Michał Kozłowski & Rafał Stasik & Michał Napierała & Barbara Kęsicka & Rafał Wróżyński & Joanna Jaskuła & Daniel Liberacki & Jerzy Bykowski, 2019. "Sustainable Water Management in Agriculture—The Impact of Drainage Water Management on Groundwater Table Dynamics and Subsurface Outflow," Sustainability, MDPI, vol. 11(15), pages 1-18, August.
    6. Cherine Akkari & Christopher Robin Bryant, 2017. "Toward Improved Adoption of Best Management Practices (BMPs) in the Lake Erie Basin: Perspectives from Resilience and Agricultural Innovation Literature," Agriculture, MDPI, vol. 7(7), pages 1-15, July.
    7. Helmers, M.J. & Abendroth, L. & Reinhart, B. & Chighladze, G. & Pease, L. & Bowling, L. & Youssef, M. & Ghane, E. & Ahiablame, L. & Brown, L. & Fausey, N. & Frankenberger, J. & Jaynes, D. & King, K. &, 2022. "Impact of controlled drainage on subsurface drain flow and nitrate load: A synthesis of studies across the U.S. Midwest and Southeast," Agricultural Water Management, Elsevier, vol. 259(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu Dou & Haibin Shi & Ruiping Li & Qingfeng Miao & Feng Tian & Dandan Yu & Liying Zhou & Bo Wang, 2021. "Effects of Controlled Drainage on the Content Change and Migration of Moisture, Nutrients, and Salts in Soil and the Yield of Oilseed Sunflower in the Hetao Irrigation District," Sustainability, MDPI, vol. 13(17), pages 1-19, September.
    2. Mariusz Sojka & Michał Kozłowski & Rafał Stasik & Michał Napierała & Barbara Kęsicka & Rafał Wróżyński & Joanna Jaskuła & Daniel Liberacki & Jerzy Bykowski, 2019. "Sustainable Water Management in Agriculture—The Impact of Drainage Water Management on Groundwater Table Dynamics and Subsurface Outflow," Sustainability, MDPI, vol. 11(15), pages 1-18, August.
    3. Shedekar, Vinayak S. & King, Kevin W. & Fausey, Norman R. & Islam, Khandakar R. & Soboyejo, Alfred B.O. & Kalcic, Margaret M. & Brown, Larry C., 2021. "Exploring the effectiveness of drainage water management on water budgets and nitrate loss using three evaluation approaches," Agricultural Water Management, Elsevier, vol. 243(C).
    4. Golmohammadi, Golmar & Rudra, Ramesh & Prasher, Shiv & Madani, Ali & Youssef, Mohamed & Goel, Pradeep & Mohammadi, Kourosh, 2017. "Impact of tile drainage on water budget and spatial distribution of sediment generating areas in an agricultural watershed," Agricultural Water Management, Elsevier, vol. 184(C), pages 124-134.
    5. Bou Lahdou, Guy & Bowling, Laura & Frankenberger, Jane & Kladivko, Eileen, 2019. "Hydrologic controls of controlled and free draining subsurface drainage systems," Agricultural Water Management, Elsevier, vol. 213(C), pages 605-615.
    6. Shokrana, Md Sami Bin & Ghane, Ehsan & Abdalaal, Yousef & Nejadhashemi, A. Pouyan, 2023. "Predicting the effect of weir management on the discharge of a controlled drainage system in a changing climate," Agricultural Water Management, Elsevier, vol. 289(C).
    7. Dou, Xu & Shi, Haibin & Li, Ruiping & Miao, Qingfeng & Yan, Jianwen & Tian, Feng & Wang, Bo, 2022. "Simulation and evaluation of soil water and salt transport under controlled subsurface drainage using HYDRUS-2D model," Agricultural Water Management, Elsevier, vol. 273(C).
    8. Gunn, Kpoti M. & Fausey, Norman R. & Shang, Yuhui & Shedekar, Vinayak S. & Ghane, Ehsan & Wahl, Mark D. & Brown, Larry C., 2015. "Subsurface drainage volume reduction with drainage water management: Case studies in Ohio, USA," Agricultural Water Management, Elsevier, vol. 149(C), pages 131-142.
    9. Ojeda, Jonathan J. & Volenec, Jeffrey J. & Brouder, Sylvie M. & Caviglia, Octavio P. & Agnusdei, Mónica G., 2018. "Modelling stover and grain yields, and subsurface artificial drainage from long-term corn rotations using APSIM," Agricultural Water Management, Elsevier, vol. 195(C), pages 154-171.
    10. Ale, S. & Bowling, L.C. & Owens, P.R. & Brouder, S.M. & Frankenberger, J.R., 2012. "Development and application of a distributed modeling approach to assess the watershed-scale impact of drainage water management," Agricultural Water Management, Elsevier, vol. 107(C), pages 23-33.
    11. He, Yupu & Jianyun, Zhang & Shihong, Yang & Dalin, Hong & Junzeng, Xu, 2019. "Effect of controlled drainage on nitrogen losses from controlled irrigation paddy fields through subsurface drainage and ammonia volatilization after fertilization," Agricultural Water Management, Elsevier, vol. 221(C), pages 231-237.
    12. Tolomio, Massimo & Borin, Maurizio, 2018. "Water table management to save water and reduce nutrient losses from agricultural fields: 6 years of experience in North-Eastern Italy," Agricultural Water Management, Elsevier, vol. 201(C), pages 1-10.
    13. Ale, S. & Bowling, L.C. & Brouder, S.M. & Frankenberger, J.R. & Youssef, M.A., 2009. "Simulated effect of drainage water management operational strategy on hydrology and crop yield for Drummer soil in the Midwestern United States," Agricultural Water Management, Elsevier, vol. 96(4), pages 653-665, April.
    14. Youssef, Mohamed A. & Abdelbaki, Ahmed M. & Negm, Lamyaa M. & Skaggs, R.Wayne & Thorp, Kelly R. & Jaynes, Dan B., 2018. "DRAINMOD-simulated performance of controlled drainage across the U.S. Midwest," Agricultural Water Management, Elsevier, vol. 197(C), pages 54-66.
    15. Wang, Zhiyu & Shao, Guangcheng & Lu, Jia & Zhang, Kun & Gao, Yang & Ding, Jihui, 2020. "Effects of controlled drainage on crop yield, drainage water quantity and quality: A meta-analysis," Agricultural Water Management, Elsevier, vol. 239(C).
    16. Salazar, Osvaldo & Wesström, Ingrid & Youssef, Mohamed A. & Skaggs, R. Wayne & Joel, Abraham, 2009. "Evaluation of the DRAINMOD-N II model for predicting nitrogen losses in a loamy sand under cultivation in south-east Sweden," Agricultural Water Management, Elsevier, vol. 96(2), pages 267-281, February.
    17. Nicole Costa Resende Ferreira & Jarbas Honorio Miranda, 2021. "Projected changes in corn crop productivity and profitability in Parana, Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 3236-3250, March.
    18. Negm, L.M. & Youssef, M.A. & Skaggs, R.W. & Chescheir, G.M. & Jones, J., 2014. "DRAINMOD–DSSAT model for simulating hydrology, soil carbon and nitrogen dynamics, and crop growth for drained crop land," Agricultural Water Management, Elsevier, vol. 137(C), pages 30-45.
    19. Miller, Samuel A. & Witter, Jonathan D. & Lyon, Steve W., 2022. "The impact of automated drainage water management on groundwater, soil moisture, and tile outlet discharge following storm events," Agricultural Water Management, Elsevier, vol. 272(C).
    20. Negm, L.M. & Youssef, M.A. & Chescheir, G.M. & Skaggs, R.W., 2016. "DRAINMOD-based tools for quantifying reductions in annual drainage flow and nitrate losses resulting from drainage water management on croplands in eastern North Carolina," Agricultural Water Management, Elsevier, vol. 166(C), pages 86-100.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:178:y:2016:i:c:p:366-376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.