IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i4p2959-d1059739.html
   My bibliography  Save this article

Impact of Water Meadow Restoration on Forage Hay Production in Different Hydro-Meteorological Conditions: A Case Study of Racot, Central Poland

Author

Listed:
  • Michał Napierała

    (Department of Land Improvement, Environmental Development and Spatial Management, Faculty of Environmental Engineering and Mechanical Engineering, Poznań University of Life Sciences, Piątkowska 94, 60-649 Poznań, Poland)

  • Mariusz Sojka

    (Department of Land Improvement, Environmental Development and Spatial Management, Faculty of Environmental Engineering and Mechanical Engineering, Poznań University of Life Sciences, Piątkowska 94, 60-649 Poznań, Poland)

  • Joanna Jaskuła

    (Department of Land Improvement, Environmental Development and Spatial Management, Faculty of Environmental Engineering and Mechanical Engineering, Poznań University of Life Sciences, Piątkowska 94, 60-649 Poznań, Poland)

Abstract

Water meadows in river valleys are a source of very valuable forage. Due to their specificity, an appropriate approach to water management is required. This study assessed the impact of the reclamation of a traditional gravity irrigation system, aimed at saving and reducing water loss from meadows through controlled drainage. The main purpose of this study was to evaluate the investment in drainage system restoration in the context of improving the yield of fodder hay in water meadows under changing hydrometeorological conditions. The analysis was performed on the basis of meteorological and hydrological data from 30 years in the period 1989–2018. The research was conducted on the basis of two assumptions. The first concerned management of meadows without the use of subsoil irrigation based only on the amount of water supplied from rainfall. The second variant assumed deficit irrigation based on periodic water meadows with systems of ditches and drainage channels that supplied water depending on the currently available amount of water in a nearby river. The field research was performed during the crop season of 2019 and 2020. Drainage restoration investment allowed the amount of water supplied to the meadows to be increased. In the analysed period, on average, almost 30 mm of water was delivered through the ditch system. There was also an increase in hay yields of 32%. However, the investment costs, which amounted to EUR 23,382.48, were too high for this type of farm production. A positive net present value (NPV) was obtained only for 25% of cases of hydrometeorological conditions (first quartile). For the other years, the investment was not profitable.

Suggested Citation

  • Michał Napierała & Mariusz Sojka & Joanna Jaskuła, 2023. "Impact of Water Meadow Restoration on Forage Hay Production in Different Hydro-Meteorological Conditions: A Case Study of Racot, Central Poland," Sustainability, MDPI, vol. 15(4), pages 1-27, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:2959-:d:1059739
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/4/2959/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/4/2959/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rodrigues, Gonçalo C. & Paredes, Paula & Gonçalves, José M. & Alves, Isabel & Pereira, Luis S., 2013. "Comparing sprinkler and drip irrigation systems for full and deficit irrigated maize using multicriteria analysis and simulation modelling: Ranking for water saving vs. farm economic returns," Agricultural Water Management, Elsevier, vol. 126(C), pages 85-96.
    2. Pereira, Luis S. & Cordery, Ian & Iacovides, Iacovos, 2012. "Improved indicators of water use performance and productivity for sustainable water conservation and saving," Agricultural Water Management, Elsevier, vol. 108(C), pages 39-51.
    3. Cabello, M.J. & Castellanos, M.T. & Romojaro, F. & Martnez-Madrid, C. & Ribas, F., 2009. "Yield and quality of melon grown under different irrigation and nitrogen rates," Agricultural Water Management, Elsevier, vol. 96(5), pages 866-874, May.
    4. Raes, D. & Deproost, P., 2003. "Model to assess water movement from a shallow water table to the root zone," Agricultural Water Management, Elsevier, vol. 62(2), pages 79-91, September.
    5. Li, Jiamin & Inanaga, Shinobu & Li, Zhaohu & Eneji, A. Egrinya, 2005. "Optimizing irrigation scheduling for winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 76(1), pages 8-23, July.
    6. Montazar, A. & Sadeghi, M., 2008. "Effects of applied water and sprinkler irrigation uniformity on alfalfa growth and hay yield," Agricultural Water Management, Elsevier, vol. 95(11), pages 1279-1287, November.
    7. Levavasseur, F. & Biarnès, A. & Bailly, J.S. & Lagacherie, P., 2014. "Time-varying impacts of different management regimes on vegetation cover in agricultural ditches," Agricultural Water Management, Elsevier, vol. 140(C), pages 14-19.
    8. Schnitkey, Gary & Lattz, Dale, 2017. "Machinery Cost Estimates for 2017," farmdoc daily, University of Illinois at Urbana-Champaign, Department of Agricultural and Consumer Economics, vol. 7, June.
    9. Kijne, Jacob W. & Barker, Randolph & Molden, David J. (ed.), 2003. "Water productivity in agriculture: limits and opportunities for improvement," IWMI Books, International Water Management Institute, number 138054.
    10. Dollinger, Jeanne & Vinatier, Fabrice & Voltz, Marc & Dagès, Cécile & Bailly, Jean-Stéphane, 2017. "Impact of maintenance operations on the seasonal evolution of ditch properties and functions," Agricultural Water Management, Elsevier, vol. 193(C), pages 191-204.
    11. Sun, Hong-Yong & Liu, Chang-Ming & Zhang, Xi-Ying & Shen, Yan-Jun & Zhang, Yong-Qiang, 2006. "Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 211-218, September.
    12. Wesseling, J.G. & Feddes, R.A., 2006. "Assessing crop water productivity from field to regional scale," Agricultural Water Management, Elsevier, vol. 86(1-2), pages 30-39, November.
    13. Zheng, Wei & Shi, Honghua & Chen, Shang & Zhu, Mingyuan, 2009. "Benefit and cost analysis of mariculture based on ecosystem services," Ecological Economics, Elsevier, vol. 68(6), pages 1626-1632, April.
    14. Molden, D. & Murray-Rust, H. & Sakthivadivel, R. & Makin, I., 2003. "A water-productivity framework for understanding and action," IWMI Books, Reports H032632, International Water Management Institute.
    15. Bai, Wen-Ming & Li, Ling-Hao, 2003. "Effect of irrigation methods and quota on root water uptake and biomass of alfalfa in the Wulanbuhe sandy region of China," Agricultural Water Management, Elsevier, vol. 62(2), pages 139-148, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Teodor Kitczak & Heidi Jänicke & Marek Bury & Grzegorz Jarnuszewski, 2023. "Intensive Meadows on Organic Soils of Temperate Climate–Useful Value of Grass Mixtures after the Regeneration," Agriculture, MDPI, vol. 13(6), pages 1-13, May.
    2. Krzysztof Kud & Aleksandra Badora & Marian Woźniak, 2024. "Sustainable Management in River Valleys, Promoting Water Retention—The Opinion of Residents of South-Eastern Poland," Sustainability, MDPI, vol. 16(11), pages 1-25, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    2. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    3. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    4. Giordano, Meredith & Turral, H. & Scheierling, S. M. & Treguer, D. O. & McCornick, Peter G, 2017. "Beyond “More Crop per Drop”: evolving thinking on agricultural water productivity," IWMI Research Reports 257962, International Water Management Institute.
    5. Zeng, Ruiyun & Yao, Fengmei & Zhang, Sha & Yang, Shanshan & Bai, Yun & Zhang, Jiahua & Wang, Jingwen & Wang, Xin, 2021. "Assessing the effects of precipitation and irrigation on winter wheat yield and water productivity in North China Plain," Agricultural Water Management, Elsevier, vol. 256(C).
    6. Fang, Qin & Zhang, Xiying & Shao, Liwei & Chen, Suying & Sun, Hongyong, 2018. "Assessing the performance of different irrigation systems on winter wheat under limited water supply," Agricultural Water Management, Elsevier, vol. 196(C), pages 133-143.
    7. Çetin, Oner & Kara, Abdurrahman, 2019. "Assesment of water productivity using different drip irrigation systems for cotton," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    8. Mohammad Alauddin & Upali A. Amarasinghe & Bharat R. Sharma, 2014. "Four decades of rice water productivity in Bangladesh: A spatio-temporal analysis of district level panel data," Economic Analysis and Policy, Elsevier, vol. 44(1), pages 51-64.
    9. Gao, Yang & Yang, Linlin & Shen, Xiaojun & Li, Xinqiang & Sun, Jingsheng & Duan, Aiwang & Wu, Laosheng, 2014. "Winter wheat with subsurface drip irrigation (SDI): Crop coefficients, water-use estimates, and effects of SDI on grain yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 146(C), pages 1-10.
    10. Kumar, M. Dinesh & Singh, O.P. & Samad, Madar & Purohit, Chaitali & Didyala, Malkit Singh, 2009. "Water productivity of irrigated agriculture in India: potential areas for improvement," Book Chapters,, International Water Management Institute.
    11. Manel Ben Hassen & Federica Monaco & Arianna Facchi & Marco Romani & Giampiero Valè & Guido Sali, 2017. "Economic Performance of Traditional and Modern Rice Varieties under Different Water Management Systems," Sustainability, MDPI, vol. 9(3), pages 1-10, February.
    12. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    13. Tendai Polite Chibarabada & Albert Thembinkosi Modi & Tafadzwanashe Mabhaudhi, 2017. "Nutrient Content and Nutritional Water Productivity of Selected Grain Legumes in Response to Production Environment," IJERPH, MDPI, vol. 14(11), pages 1-17, October.
    14. Ghahroodi, E. Mokari & Noory, H. & Liaghat, A.M., 2015. "Performance evaluation study and hydrologic and productive analysis of irrigation systems at the Qazvin irrigation network (Iran)," Agricultural Water Management, Elsevier, vol. 148(C), pages 189-195.
    15. Geerts, S. & Raes, D. & Garcia, M., 2010. "Using AquaCrop to derive deficit irrigation schedules," Agricultural Water Management, Elsevier, vol. 98(1), pages 213-216, December.
    16. Kumar, M. Dinesh & Amarasinghe, Upali A., 2009. "Strategic Analyses of the National River Linking Project (NRLP) of India, Series 4. Water productivity improvements in Indian agriculture: potentials, constraints and prospects," IWMI Books, Reports H042633, International Water Management Institute.
    17. Lejars, C. & Fusillier, JL & Bouarfa, S. & Brunel, L. & Rucheton, G., 2011. "Evaluation des impacts de restrictions d’eau pour l’usage agricole Une démarche à l’échelle des filières de production," 2011 Conference: Impacts of Climate Change on Agriculture, December 6-7, 2011, Rabat, Morocco 188551, Moroccan Association of Agricultural Economics (AMAEco).
    18. Zhao, Nana & Liu, Yu & Cai, Jiabing & Paredes, Paula & Rosa, Ricardo D. & Pereira, Luis S., 2013. "Dual crop coefficient modelling applied to the winter wheat–summer maize crop sequence in North China Plain: Basal crop coefficients and soil evaporation component," Agricultural Water Management, Elsevier, vol. 117(C), pages 93-105.
    19. Mansour, Elsayed & Desoky, El-Sayed M. & Ali, Mohamed M.A. & Abdul-Hamid, Mohamed I. & Ullah, Hayat & Attia, Ahmed & Datta, Avishek, 2021. "Identifying drought-tolerant genotypes of faba bean and their agro-physiological responses to different water regimes in an arid Mediterranean environment," Agricultural Water Management, Elsevier, vol. 247(C).
    20. Lu, Junsheng & Geng, Chenming & Cui, Xiaolu & Li, Mengyue & Chen, Shuaihong & Hu, Tiantian, 2021. "Response of drip fertigated wheat-maize rotation system on grain yield, water productivity and economic benefits using different water and nitrogen amounts," Agricultural Water Management, Elsevier, vol. 258(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:2959-:d:1059739. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.