IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v97y2010i1p41-49.html
   My bibliography  Save this article

Soil sodicity as a result of periodical drought

Author

Listed:
  • van der Zee, S.E.A.T.M.
  • Shah, S.H.H.
  • van Uffelen, C.G.R.
  • Raats, P.A.C.
  • dal Ferro, N.

Abstract

Soil sodicity development is a process that depends nonlinearly on both salt concentration and composition of soil water. In particular in hot climates, soil water composition is subject to temporal variation due to dry-wet cycles. To investigate the effect of such cycles on soil salinity and sodicity, a simple root zone model is developed that accounts for annual salt accumulation and leaching periods. Cation exchange is simplified to considering only Ca/Na exchange, using the Gapon exchange equation. The resulting salt and Ca/Na-balances are solved for a series of dry/wet cycles with a standard numerical approach. Due to the nonlinearities in the Gapon equation, the fluctuations of soil salinity that may be induced, e.g. by fluctuating soil water content, affect sodicity development. Even for the case that salinity is in a periodic steady state, where salt concentrations do not increase on the long term, sodicity may still grow as a function of time from year to year. For the longer term, sodicity, as quantified by Exchangeable Sodium Percentage (ESP), approaches a maximum value that depends on drought and inflowing water quality, but not on soil cation exchange capacity. Analytical approaches for the salinity and sodicity developing under such fluctuating regimes appear to be in good agreement with numerical approximations and are very useful for checking numerical results and anticipating changes in practical situations.

Suggested Citation

  • van der Zee, S.E.A.T.M. & Shah, S.H.H. & van Uffelen, C.G.R. & Raats, P.A.C. & dal Ferro, N., 2010. "Soil sodicity as a result of periodical drought," Agricultural Water Management, Elsevier, vol. 97(1), pages 41-49, January.
  • Handle: RePEc:eee:agiwat:v:97:y:2010:i:1:p:41-49
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(09)00237-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Armstrong, A. S. B. & Rycroft, D. W. & Tanton, T. W., 1996. "Seasonal movement of salts in naturally structured saline-sodic clay soils," Agricultural Water Management, Elsevier, vol. 32(1), pages 15-27, November.
    2. Minhas, P.S. & Dubey, S.K. & Sharma, D.R., 2007. "Comparative affects of blending, intera/inter-seasonal cyclic uses of alkali and good quality waters on soil properties and yields of paddy and wheat," Agricultural Water Management, Elsevier, vol. 87(1), pages 83-90, January.
    3. Tedeschi, A. & Dell'Aquila, R., 2005. "Effects of irrigation with saline waters, at different concentrations, on soil physical and chemical characteristics," Agricultural Water Management, Elsevier, vol. 77(1-3), pages 308-322, August.
    4. Corwin, Dennis L. & Rhoades, James D. & Simunek, Jirka, 2007. "Leaching requirement for soil salinity control: Steady-state versus transient models," Agricultural Water Management, Elsevier, vol. 90(3), pages 165-180, June.
    5. Kaledhonkar, M. J. & Tyagi, N. K. & Van Der Zee, S. E. A. T. M., 2001. "Solute transport modelling in soil for irrigation field experiments with alkali water," Agricultural Water Management, Elsevier, vol. 51(2), pages 153-171, October.
    6. Tedeschi, A. & Menenti, M., 2002. "Simulation studies of long-term saline water use: model validation and evaluation of schedules," Agricultural Water Management, Elsevier, vol. 54(2), pages 123-157, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Noory, H. & van der Zee, S.E.A.T.M. & Liaghat, A.-M. & Parsinejad, M. & van Dam, J.C., 2011. "Distributed agro-hydrological modeling with SWAP to improve water and salt management of the Voshmgir Irrigation and Drainage Network in Northern Iran," Agricultural Water Management, Elsevier, vol. 98(6), pages 1062-1070, April.
    2. Millar, Graeme J. & Couperthwaite, Sara J. & Moodliar, Cameron D., 2016. "Strategies for the management and treatment of coal seam gas associated water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 669-691.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).
    2. Farhadi Machekposhti, Mabood & Shahnazari, Ali & Z. Ahmadi, Mirkhalegh & Aghajani, Ghasem & Ritzema, Henk, 2017. "Effect of irrigation with sea water on soil salinity and yield of oleic sunflower," Agricultural Water Management, Elsevier, vol. 188(C), pages 69-78.
    3. A. Tedeschi & M. Menenti, 2002. "Indicators of the Seasonal Cycle of Total Dissolved and Adsorbed Salts under Irrigation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 16(2), pages 89-103, April.
    4. Liu, Yi & Zeng, Wenzhi & Ao, Chang & Lei, Guoqing & Wu, Jingwei & Huang, Jiesheng & Gaiser, Thomas & Srivastava, Amit Kumar, 2022. "Optimization of winter irrigation management for salinized farmland using a coupled model of soil water flow and crop growth," Agricultural Water Management, Elsevier, vol. 270(C).
    5. Sabri KANZARI & Mohamed HACHICHA & Rachida BOUHLILA & Jorge BATTLE-SALES, 2012. "Simulation of water and salts dynamics in Bouhajla (Central Tunisia): exceptional rainfall effect," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 7(1), pages 36-44.
    6. Rosa, R.D. & Ramos, T.B. & Pereira, L.S., 2016. "The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 177(C), pages 77-94.
    7. Hess, T.M. & Molatakgosi, G., 2009. "Irrigation management practices of cabbage farmers in Botswana using saline groundwater," Agricultural Water Management, Elsevier, vol. 96(2), pages 226-232, February.
    8. B. Mostafazadeh-Fard & M. Heidarpour & A. Aghakhani & M. Feizi, 2008. "Effects of leaching on soil desalinization for wheat crop in an arid region," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 54(1), pages 20-29.
    9. Wasantha Athukorala & Clevo Wilson, 2012. "Groundwater overuse and farm-level technical inefficiency: evidence from Sri Lanka," School of Economics and Finance Discussion Papers and Working Papers Series 279, School of Economics and Finance, Queensland University of Technology.
    10. Peragón, Juan M. & Pérez-Latorre, Francisco J. & Delgado, Antonio & Tóth, Tibor, 2018. "Best management irrigation practices assessed by a GIS-based decision tool for reducing salinization risks in olive orchards," Agricultural Water Management, Elsevier, vol. 202(C), pages 33-41.
    11. Chen, Weiping & Hou, Zhenan & Wu, Laosheng & Liang, Yongchao & Wei, Changzhou, 2010. "Evaluating salinity distribution in soil irrigated with saline water in arid regions of northwest China," Agricultural Water Management, Elsevier, vol. 97(12), pages 2001-2008, November.
    12. Li, Jingang & He, Pingru & Chen, Jing & Hamad, Amar Ali Adam & Dai, Xiaoping & Jin, Qiu & Ding, Siyu, 2023. "Tomato performance and changes in soil chemistry in response to salinity and Na/Ca ratio of irrigation water," Agricultural Water Management, Elsevier, vol. 285(C).
    13. Amirhossein Hassani & Adisa Azapagic & Nima Shokri, 2021. "Global predictions of primary soil salinization under changing climate in the 21st century," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    14. Zhang, Yuehong & Li, Xianyue & Šimůnek, Jirí & Shi, Haibin & Chen, Ning & Hu, Qi & Tian, Tong, 2021. "Evaluating soil salt dynamics in a field drip-irrigated with brackish water and leached with freshwater during different crop growth stages," Agricultural Water Management, Elsevier, vol. 244(C).
    15. Liu, Bingxia & Wang, Shiqin & Kong, Xiaole & Liu, Xiaojing & Sun, Hongyong, 2019. "Modeling and assessing feasibility of long-term brackish water irrigation in vertically homogeneous and heterogeneous cultivated lowland in the North China Plain," Agricultural Water Management, Elsevier, vol. 211(C), pages 98-110.
    16. Chengfu Yuan & Shaoyuan Feng & Zailin Huo & Quanyi Ji, 2019. "Simulation of Saline Water Irrigation for Seed Maize in Arid Northwest China Based on SWAP Model," Sustainability, MDPI, vol. 11(16), pages 1-14, August.
    17. Tedeschi, A. & Lavini, A. & Riccardi, M. & Pulvento, C. & d'Andria, R., 2011. "Melon crops (Cucumis melo L., cv. Tendral) grown in a mediterranean environment under saline-sodic conditions: Part I. Yield and quality," Agricultural Water Management, Elsevier, vol. 98(9), pages 1329-1338, July.
    18. Minhas, P.S. & Qadir, Manzoor & Yadav, R.K., 2019. "Groundwater irrigation induced soil sodification and response options," Agricultural Water Management, Elsevier, vol. 215(C), pages 74-85.
    19. Muhammad Arshad Ullah & Syeda Sana Aamir & Imdad Ali Mahmood & Badar uz Zaman & Syed Ishtiaq Hyder & Bilal Adil & Hussnain Haider, 2018. "Effect of Saline Water on Physicochemical Properties of Soil Used in Plastic Nursery Bags of Three Months Olive Sprouted Cuttings under Tunnel Conditions," Current Investigations in Agriculture and Current Research, Lupine Publishers, LLC, vol. 1(4), pages 97-100, March.
    20. Zhenjie Du & Shuang Zhao & Yingjun She & Yan Zhang & Jingjing Yuan & Shafeeq Ur Rahman & Xuebin Qi & Yue Xu & Ping Li, 2022. "Effects of Different Wastewater Irrigation on Soil Properties and Vegetable Productivity in the North China Plain," Agriculture, MDPI, vol. 12(8), pages 1-13, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:97:y:2010:i:1:p:41-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.