IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v384y2018icp173-187.html
   My bibliography  Save this article

Unified representation of the C3, C4, and CAM photosynthetic pathways with the Photo3 model

Author

Listed:
  • Hartzell, Samantha
  • Bartlett, Mark S.
  • Porporato, Amilcare

Abstract

Recent interest in crassulacean acid metabolism (CAM) photosynthesis has resulted in new, physiologically based CAM models. These models show promise, yet typically are not developed with a basis that is compatible with widely used models of C3 and C4 photosynthesis. Indeed, most efforts to assess the potential of CAM still rely on empirically based environmental productivity indices, which makes uniform comparisons between CAM and non-CAM species difficult. In order to represent C3, C4, and CAM photosynthesis in a consistent, physiologically based manner, we introduce the Photo3 model. Photo3 unites a common photosynthetic and hydraulic core with components depicting the circadian rhythm of CAM photosynthesis and the carbon-concentrating mechanism of C4 photosynthesis. This work allows consistent comparisons of the three photosynthetic types for the first time. It also allows the representation of intermediate C3-CAM behavior through the adjustment of a single model parameter. Model simulations of Opuntia ficus-indica (CAM), Sorghum bicolor (C4), and Triticum aestivum (C3) capture the diurnal behavior of each species as well as the cumulative effects of long-term water limitation. These results show the model's potential for evaluating the tradeoffs between C3, C4, and CAM photosynthesis, and for better understanding CAM productivity, ecology, and climate feedbacks.

Suggested Citation

  • Hartzell, Samantha & Bartlett, Mark S. & Porporato, Amilcare, 2018. "Unified representation of the C3, C4, and CAM photosynthetic pathways with the Photo3 model," Ecological Modelling, Elsevier, vol. 384(C), pages 173-187.
  • Handle: RePEc:eee:ecomod:v:384:y:2018:i:c:p:173-187
    DOI: 10.1016/j.ecolmodel.2018.06.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380018302175
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2018.06.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Olufayo, A. & Baldy, C. & Ruelle, P., 1996. "Sorghum yield, water use and canopy temperatures under different levels of irrigation," Agricultural Water Management, Elsevier, vol. 30(1), pages 77-90, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mouhib, Elmehdi & Fernández-Solas, Álvaro & Pérez-Higueras, Pedro J. & Fernández-Ocaña, Ana M. & Micheli, Leonardo & Almonacid, Florencia & Fernández, Eduardo F., 2024. "Enhancing land use: Integrating bifacial PV and olive trees in agrivoltaic systems," Applied Energy, Elsevier, vol. 359(C).
    2. Elmehdi Mouhib & Leonardo Micheli & Florencia M. Almonacid & Eduardo F. Fernández, 2022. "Overview of the Fundamentals and Applications of Bifacial Photovoltaic Technology: Agrivoltaics and Aquavoltaics," Energies, MDPI, vol. 15(23), pages 1-30, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. N. Dercas & A. Liakatas, 2007. "Water and Radiation Effect on Sweet Sorghum Productivity," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(9), pages 1585-1600, September.
    2. Fan, Tinglu & Wang, Shuying & Xiaoming, Tang & Luo, Junjie & Stewart, Bob A. & Gao, Yufeng, 2005. "Grain yield and water use in a long-term fertilization trial in Northwest China," Agricultural Water Management, Elsevier, vol. 76(1), pages 36-52, July.
    3. Mailhol, Jean Claude & Olufayo, Ayorinde A. & Ruelle, Pierre, 1997. "Sorghum and sunflower evapotranspiration and yield from simulated leaf area index," Agricultural Water Management, Elsevier, vol. 35(1-2), pages 167-182, December.
    4. M.R. Khaledian & J.C. Mailhol & P. Ruelle & J.L. Rosique, 2009. "Adapting PILOTE model for water and yield management under direct seeding system: The case of corn and durum wheat in a Mediterranean context," Post-Print hal-00454543, HAL.
    5. Khaledian, M.R. & Mailhol, J.C. & Ruelle, P. & Rosique, P., 2009. "Adapting PILOTE model for water and yield management under direct seeding system: The case of corn and durum wheat in a Mediterranean context," Agricultural Water Management, Elsevier, vol. 96(5), pages 757-770, May.
    6. O'Shaughnessy, Susan A. & Evett, Steven R. & Colaizzi, Paul D. & Howell, Terry A., 2012. "A crop water stress index and time threshold for automatic irrigation scheduling of grain sorghum," Agricultural Water Management, Elsevier, vol. 107(C), pages 122-132.
    7. Mao, Xuesen & Liu, Mengyu & Wang, Xinyuan & Liu, Changming & Hou, Zhimin & Shi, Jinzhi, 2003. "Effects of deficit irrigation on yield and water use of greenhouse grown cucumber in the North China Plain," Agricultural Water Management, Elsevier, vol. 61(3), pages 219-228, July.

    More about this item

    Keywords

    C3 photosynthesis; C4 photosynthesis; Crassulacean acid metabolism (CAM); Plant water storage; Soil–plant–atmosphere continuum;
    All these keywords.

    JEL classification:

    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:384:y:2018:i:c:p:173-187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.