Stable oxygen isotope analysis of the water uptake mechanism via the roots in spring maize under the ridge–furrow rainwater harvesting system in a semi-arid region
Author
Abstract
Suggested Citation
DOI: 10.1016/j.agwat.2021.106879
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jha, Shiva K. & Gao, Yang & Liu, Hao & Huang, Zhongdong & Wang, Guangshuai & Liang, Yueping & Duan, Aiwang, 2017. "Root development and water uptake in winter wheat under different irrigation methods and scheduling for North China," Agricultural Water Management, Elsevier, vol. 182(C), pages 139-150.
- Wu, Youjie & Du, Taisheng & Ding, Risheng & Yuan, Yusen & Li, Sien & Tong, Ling, 2017. "An isotope method to quantify soil evaporation and evaluate water vapor movement under plastic film mulch," Agricultural Water Management, Elsevier, vol. 184(C), pages 59-66.
- Wang, Peng & Song, Xianfang & Han, Dongmei & Zhang, Yinghua & Liu, Xin, 2010. "A study of root water uptake of crops indicated by hydrogen and oxygen stable isotopes: A case in Shanxi Province, China," Agricultural Water Management, Elsevier, vol. 97(3), pages 475-482, March.
- Daniel R. Hirmas & Daniel Giménez & Attila Nemes & Ruth Kerry & Nathaniel A. Brunsell & Cassandra J. Wilson, 2018. "Climate-induced changes in continental-scale soil macroporosity may intensify water cycle," Nature, Nature, vol. 561(7721), pages 100-103, September.
- Wu, Youjie & Du, Taisheng & Li, Fusheng & Li, Sien & Ding, Risheng & Tong, Ling, 2016. "Quantification of maize water uptake from different layers and root zones under alternate furrow irrigation using stable oxygen isotope," Agricultural Water Management, Elsevier, vol. 168(C), pages 35-44.
- Li, Caixia & Sun, Jingsheng & Li, Fusheng & Zhou, Xinguo & Li, Zhongyang & Qiang, Xiaoman & Guo, Dongdong, 2011. "Response of root morphology and distribution in maize to alternate furrow irrigation," Agricultural Water Management, Elsevier, vol. 98(12), pages 1789-1798, October.
- Qi Wang & Enhe Zhang & Fengmin Li & Fengrui Li, 2008. "Runoff Efficiency and the Technique of Micro-water Harvesting with Ridges and Furrows, for Potato Production in Semi-arid Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(10), pages 1431-1443, October.
- Wang, Peng & Song, Xianfang & Han, Dongmei & Zhang, Yinhua & Zhang, Bing, 2012. "Determination of evaporation, transpiration and deep percolation of summer corn and winter wheat after irrigation," Agricultural Water Management, Elsevier, vol. 105(C), pages 32-37.
- Wang, Yin & Zhang, Xinyue & Chen, Jian & Chen, Anji & Wang, Liying & Guo, Xiaoying & Niu, Yali & Liu, Shuoran & Mi, Guohua & Gao, Qiang, 2019. "Reducing basal nitrogen rate to improve maize seedling growth, water and nitrogen use efficiencies under drought stress by optimizing root morphology and distribution," Agricultural Water Management, Elsevier, vol. 212(C), pages 328-337.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Huang, Zhongdong & Zhang, Xiaoxian & Ashton, Rhys W. & Hawkesford, Malcom J. & Richard Whalley, W., 2023. "Root phenotyping and root water uptake calculation using soil water contents measured in a winter wheat field," Agricultural Water Management, Elsevier, vol. 290(C).
- Haibiao Dong & Jing Hao & Zongyu Chen & Guanghui Zhang & Mingjiang Yan & Jinzhe Wang, 2022. "Root Water Uptake Patterns for Nitraria during the Growth Period Differing in Time Interval from a Precipitation Event in Arid Regions," Sustainability, MDPI, vol. 14(13), pages 1-9, July.
- Wu, Yali & Ma, Ying & Niu, Yuan & Song, Xianfang & Yu, Hui & Lan, Wei & Kang, Xiaoqi, 2021. "Warming changed seasonal water uptake patterns of summer maize," Agricultural Water Management, Elsevier, vol. 258(C).
- Liu, Yingbo & Yuan, Yusen & Zhang, Liang & Du, Taisheng, 2024. "Exploring the differences of moisture traceability methods based on MixSIAR model under different nitrogen applications of wheat in the Arid Region of Northwest China," Agricultural Water Management, Elsevier, vol. 294(C).
- Zhang, Rui & Zhu, Miyuan & Mady, Ahmed Yehia & Huang, Mingbin & Yan, Xiaoying & Guo, Tianqi, 2024. "Effects of different long-term fertilization and cropping systems on crop yield, water balance components and water productivity in dryland farming," Agricultural Water Management, Elsevier, vol. 292(C).
- Zhang, Yuehong & Li, Xianyue & Šimůnek, Jiří & Shi, Haibin & Chen, Ning & Hu, Qi, 2023. "Quantifying water and salt movement in a soil-plant system of a corn field using HYDRUS (2D/3D) and the stable isotope method," Agricultural Water Management, Elsevier, vol. 288(C).
- Wang, Weiyan & Guo, Wenjia & Dong, Jiangyao & Zhang, Houping & Liao, Yuncheng & Wen, Xiaoxia, 2024. "Ridge-furrow planting patterns with film mulching improve water use efficiency by enhancing arbuscular mycorrhizal fungi in the rhizosphere and endophyte of summer maize," Agricultural Water Management, Elsevier, vol. 296(C).
- Wang, Jiaxin & He, Xinlin & Gong, Ping & Heng, Tong & Zhao, Danqi & Wang, Chunxia & Chen, Quan & Wei, Jie & Lin, Ping & Yang, Guang, 2024. "Response of fragrant pear quality and water productivity to lateral depth and irrigation amount," Agricultural Water Management, Elsevier, vol. 292(C).
- Zhang, Xuemei & Wang, Rui & Liu, Bo & Wang, Youcai & Yang, Linchuan & Zhao, Ji & Xu, Jing & Li, Zhimin & Zhang, Xudong & Han, Qingfang, 2023. "Optimization of ridge–furrow mulching ratio enhances precipitation collection before silking to improve maize yield in a semi–arid region," Agricultural Water Management, Elsevier, vol. 275(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Liao, Renkuan & Yang, Peiling & Zhu, Yuanhao & Wu, Wenyong & Ren, Shumei, 2018. "Modeling soil water flow and quantification of root water extraction from different soil layers under multi-chemicals application in dry land field," Agricultural Water Management, Elsevier, vol. 203(C), pages 75-86.
- Wu, Yali & Ma, Ying & Niu, Yuan & Song, Xianfang & Yu, Hui & Lan, Wei & Kang, Xiaoqi, 2021. "Warming changed seasonal water uptake patterns of summer maize," Agricultural Water Management, Elsevier, vol. 258(C).
- Ning, Dongfeng & Chen, Haiqing & Qin, Anzhen & Gao, Yang & Zhang, Jiyang & Duan, Aiwang & Wang, Xingpeng & Liu, Zhandong, 2024. "Optimizing irrigation and N fertigation regimes achieved high yield and water productivity and low N leaching in a maize field in the North China Plain," Agricultural Water Management, Elsevier, vol. 301(C).
- Zhang, Yongyong & Wu, Shaoxiong & Kang, Wenrong & Tian, Zihan, 2022. "Multiple sources characteristics of root water uptake of crop under oasis farmlands in hyper-arid regions," Agricultural Water Management, Elsevier, vol. 271(C).
- Hou, Chenli & Tian, Delong & Xu, Bing & Ren, Jie & Hao, Lei & Chen, Ning & Li, Xianyue, 2021. "Use of the stable oxygen isotope method to evaluate the difference in water consumption and utilization strategy between alfalfa and maize fields in an arid shallow groundwater area," Agricultural Water Management, Elsevier, vol. 256(C).
- Zhang, Guangxin & Meng, Wenhui & Pan, Wenhui & Han, Juan & Liao, Yuncheng, 2022. "Effect of soil water content changes caused by ridge-furrow plastic film mulching on the root distribution and water use pattern of spring maize in the Loess Plateau," Agricultural Water Management, Elsevier, vol. 261(C).
- Aouade, G. & Ezzahar, J. & Amenzou, N. & Er-Raki, S. & Benkaddour, A. & Khabba, S. & Jarlan, L., 2016. "Combining stable isotopes, Eddy Covariance system and meteorological measurements for partitioning evapotranspiration, of winter wheat, into soil evaporation and plant transpiration in a semi-arid reg," Agricultural Water Management, Elsevier, vol. 177(C), pages 181-192.
- Li, Pingfeng & Cao, Xiaoqing & Tan, Huang & Wang, Jiahang & Ren, Shumei & Yang, Peiling, 2020. "Studies on water uptake and heat status of cherry root under water-saving measures," Agricultural Water Management, Elsevier, vol. 242(C).
- Liu, Zhen & Ma, Feng-yun & Hu, Tong-xi & Zhao, Kai-guang & Gao, Tian-ping & Zhao, Hong-xiang & Ning, Tang-yuan, 2020. "Using stable isotopes to quantify water uptake from different soil layers and water use efficiency of wheat under long-term tillage and straw return practices," Agricultural Water Management, Elsevier, vol. 229(C).
- Ye, Tianyang & Ma, Jifeng & Zhang, Pei & Shan, Song & Liu, Leilei & Tang, Liang & Cao, Weixing & Liu, Bing & Zhu, Yan, 2022. "Interaction effects of irrigation and nitrogen on the coordination between crop water productivity and nitrogen use efficiency in wheat production on the North China Plain," Agricultural Water Management, Elsevier, vol. 271(C).
- Wu, Youjie & Du, Taisheng & Li, Fusheng & Li, Sien & Ding, Risheng & Tong, Ling, 2016. "Quantification of maize water uptake from different layers and root zones under alternate furrow irrigation using stable oxygen isotope," Agricultural Water Management, Elsevier, vol. 168(C), pages 35-44.
- Yong-zong Lu & Peng-fei Liu & Aliasghar Montazar & Kyaw-Tha Paw U & Yong-guang Hu, 2019. "Soil Water Infiltration Model for Sprinkler Irrigation Control Strategy: A Case for Tea Plantation in Yangtze River Region," Agriculture, MDPI, vol. 9(10), pages 1-11, September.
- Cao, Xiaoqing & Yang, Peiling & Engel, Bernard A. & Li, Pingfeng, 2018. "The effects of rainfall and irrigation on cherry root water uptake under drip irrigation," Agricultural Water Management, Elsevier, vol. 197(C), pages 9-18.
- Mérel, Pierre & Paroissien, Emmanuel & Gammans, Matthew, 2024.
"Sufficient statistics for climate change counterfactuals,"
Journal of Environmental Economics and Management, Elsevier, vol. 124(C).
- Pierre Mérel & Emmanuel Paroissien & Matthew Gammans, 2024. "Sufficient statistics for climate change counterfactuals," Post-Print hal-04498651, HAL.
- Yang, Danni & Li, Sien & Kang, Shaozhong & Du, Taisheng & Guo, Ping & Mao, Xiaomin & Tong, Ling & Hao, Xinmei & Ding, Risheng & Niu, Jun, 2020. "Effect of drip irrigation on wheat evapotranspiration, soil evaporation and transpiration in Northwest China," Agricultural Water Management, Elsevier, vol. 232(C).
- Chen, Rui & Wang, Zhenhua & Dhital, Yam Prasad & Zhang, Xinyu, 2022. "A comparative evaluation of soil preferential flow of mulched drip irrigation cotton field in Xinjiang based on dyed image variability versus fractal characteristic parameter," Agricultural Water Management, Elsevier, vol. 269(C).
- Wu, Youjie & Du, Taisheng & Ding, Risheng & Yuan, Yusen & Li, Sien & Tong, Ling, 2017. "An isotope method to quantify soil evaporation and evaluate water vapor movement under plastic film mulch," Agricultural Water Management, Elsevier, vol. 184(C), pages 59-66.
- Ma, Shou-tian & Wang, Tong-chao & Ma, Shou-Chen, 2022. "Effects of drip irrigation on root activity pattern, root-sourced signal characteristics and yield stability of winter wheat," Agricultural Water Management, Elsevier, vol. 271(C).
- Lu, Junsheng & Geng, Chenming & Cui, Xiaolu & Li, Mengyue & Chen, Shuaihong & Hu, Tiantian, 2021. "Response of drip fertigated wheat-maize rotation system on grain yield, water productivity and economic benefits using different water and nitrogen amounts," Agricultural Water Management, Elsevier, vol. 258(C).
- Duan, Chenxiao & Chen, Guangjie & Hu, Yajin & Wu, Shufang & Feng, Hao & Dong, Qin’ge, 2021. "Alternating wide ridges and narrow furrows with film mulching improves soil hydrothermal conditions and maize water use efficiency in dry sub-humid regions," Agricultural Water Management, Elsevier, vol. 245(C).
More about this item
Keywords
Mechanism; Ridge–furrow rainwater harvesting system; Root water uptake; Spring maize; Stable oxygen isotope;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:252:y:2021:i:c:s037837742100144x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.