IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v97y2010i3p475-482.html
   My bibliography  Save this article

A study of root water uptake of crops indicated by hydrogen and oxygen stable isotopes: A case in Shanxi Province, China

Author

Listed:
  • Wang, Peng
  • Song, Xianfang
  • Han, Dongmei
  • Zhang, Yinghua
  • Liu, Xin

Abstract

Mechanisms of crop root water uptake play an important role in agricultural water management. In this study, stable isotopes were used to understand root water uptake patterns for the main crops (summer corn and cotton) in Shanxi Province, China. Precipitation, irrigation water, soil water, groundwater and stem water were sampled for stable isotopes analyses, and supported by hydrological observations. Both direct inference of hydrogen and oxygen isotopes between stem water and the soil water profile, and multiple-source mass balance assessment were applied to estimate the main depths of root water uptake of crops in different growing seasons. The results show that summer corn and cotton have different root water uptake patterns: summer corn mainly uses the shallow soil water from 0 to 20cm layer (96-99%) in jointing stage and extending to 20-50cm (58-85%) in flowering stage, then 0-20cm (69-76%) again in full ripe stage. In contrast, the main depth of root water uptake of cotton gradually increases during the whole growth stage: from 0 to 20cm (27-49%) in seedling stage, 20-50cm (79-84%) in bud stage, 50-90cm (30-92%) in blooming stage and >90cm (69-92%) in boll open stage.

Suggested Citation

  • Wang, Peng & Song, Xianfang & Han, Dongmei & Zhang, Yinghua & Liu, Xin, 2010. "A study of root water uptake of crops indicated by hydrogen and oxygen stable isotopes: A case in Shanxi Province, China," Agricultural Water Management, Elsevier, vol. 97(3), pages 475-482, March.
  • Handle: RePEc:eee:agiwat:v:97:y:2010:i:3:p:475-482
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(09)00338-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Burgess, Stephen S. O. & Adams, Mark A. & Turner, Neil C. & Ward, Brett, 2000. "Characterisation of hydrogen isotope profiles in an agroforestry system: implications for tracing water sources of trees," Agricultural Water Management, Elsevier, vol. 45(3), pages 229-241, August.
    2. Cramer, Viki A. & Thorburn, Peter J. & Fraser, Grant W., 1999. "Transpiration and groundwater uptake from farm forest plots of Casuarina glauca and Eucalyptus camaldulensis in saline areas of southeast Queensland, Australia," Agricultural Water Management, Elsevier, vol. 39(2-3), pages 187-204, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Kai & Liao, Huan & Hao, Haibo & Hou, Zhenan, 2024. "Water and nitrogen supply at spatially distinct locations improves cotton water productivity and nitrogen use efficiency and yield under drip irrigation," Agricultural Water Management, Elsevier, vol. 296(C).
    2. Zhang, Guangxin & Meng, Wenhui & Pan, Wenhui & Han, Juan & Liao, Yuncheng, 2022. "Effect of soil water content changes caused by ridge-furrow plastic film mulching on the root distribution and water use pattern of spring maize in the Loess Plateau," Agricultural Water Management, Elsevier, vol. 261(C).
    3. Hou, Chenli & Tian, Delong & Xu, Bing & Ren, Jie & Hao, Lei & Chen, Ning & Li, Xianyue, 2021. "Use of the stable oxygen isotope method to evaluate the difference in water consumption and utilization strategy between alfalfa and maize fields in an arid shallow groundwater area," Agricultural Water Management, Elsevier, vol. 256(C).
    4. Cao, Xiaoqing & Yang, Peiling & Engel, Bernard A. & Li, Pingfeng, 2018. "The effects of rainfall and irrigation on cherry root water uptake under drip irrigation," Agricultural Water Management, Elsevier, vol. 197(C), pages 9-18.
    5. Zhang, Yongyong & Wu, Shaoxiong & Kang, Wenrong & Tian, Zihan, 2022. "Multiple sources characteristics of root water uptake of crop under oasis farmlands in hyper-arid regions," Agricultural Water Management, Elsevier, vol. 271(C).
    6. Li, Pingfeng & Cao, Xiaoqing & Tan, Huang & Wang, Jiahang & Ren, Shumei & Yang, Peiling, 2020. "Studies on water uptake and heat status of cherry root under water-saving measures," Agricultural Water Management, Elsevier, vol. 242(C).
    7. Brighenti, Stefano & Tagliavini, Massimo & Comiti, Francesco & Aguzzoni, Agnese & Giuliani, Nicola & Ben Abdelkader, Ahmed & Penna, Daniele & Zanotelli, Damiano, 2024. "Drip irrigation frequency leads to plasticity in root water uptake by apple trees," Agricultural Water Management, Elsevier, vol. 298(C).
    8. Liu, Zhen & Ma, Feng-yun & Hu, Tong-xi & Zhao, Kai-guang & Gao, Tian-ping & Zhao, Hong-xiang & Ning, Tang-yuan, 2020. "Using stable isotopes to quantify water uptake from different soil layers and water use efficiency of wheat under long-term tillage and straw return practices," Agricultural Water Management, Elsevier, vol. 229(C).
    9. Wu, Youjie & Du, Taisheng & Li, Fusheng & Li, Sien & Ding, Risheng & Tong, Ling, 2016. "Quantification of maize water uptake from different layers and root zones under alternate furrow irrigation using stable oxygen isotope," Agricultural Water Management, Elsevier, vol. 168(C), pages 35-44.
    10. Rezzouk, Fatima Zahra & Gracia-Romero, Adrian & Segarra, Joel & Kefauver, Shawn C. & Aparicio, Nieves & Serret, Maria Dolors & Araus, José Luis, 2023. "Root traits and resource acquisition determining durum wheat performance under Mediterranean conditions: An integrative approach," Agricultural Water Management, Elsevier, vol. 288(C).
    11. Liao, Renkuan & Yang, Peiling & Zhu, Yuanhao & Wu, Wenyong & Ren, Shumei, 2018. "Modeling soil water flow and quantification of root water extraction from different soil layers under multi-chemicals application in dry land field," Agricultural Water Management, Elsevier, vol. 203(C), pages 75-86.
    12. Wang, Peng & Song, Xianfang & Han, Dongmei & Zhang, Yinhua & Zhang, Bing, 2012. "Determination of evaporation, transpiration and deep percolation of summer corn and winter wheat after irrigation," Agricultural Water Management, Elsevier, vol. 105(C), pages 32-37.
    13. Wu, Yali & Ma, Ying & Niu, Yuan & Song, Xianfang & Yu, Hui & Lan, Wei & Kang, Xiaoqi, 2021. "Warming changed seasonal water uptake patterns of summer maize," Agricultural Water Management, Elsevier, vol. 258(C).
    14. Aouade, G. & Ezzahar, J. & Amenzou, N. & Er-Raki, S. & Benkaddour, A. & Khabba, S. & Jarlan, L., 2016. "Combining stable isotopes, Eddy Covariance system and meteorological measurements for partitioning evapotranspiration, of winter wheat, into soil evaporation and plant transpiration in a semi-arid reg," Agricultural Water Management, Elsevier, vol. 177(C), pages 181-192.
    15. Singh, Atinderpal & Deb, Sanjit K. & Slaughter, Lindsey C. & Singh, Sukhbir & Ritchie, Glen L. & Guo, Wenxuan & Saini, Rupinder, 2023. "Simulation of root zone soil water dynamics under cotton-silverleaf nightshade interactions in drip-irrigated cotton," Agricultural Water Management, Elsevier, vol. 288(C).
    16. Li, Quanqi & Dong, Baodi & Qiao, Yunzhou & Liu, Mengyu & Zhang, Jiwang, 2010. "Root growth, available soil water, and water-use efficiency of winter wheat under different irrigation regimes applied at different growth stages in North China," Agricultural Water Management, Elsevier, vol. 97(10), pages 1676-1682, October.
    17. Xu, Jing & Guo, Ziyan & Li, Zhimin & Li, Fangjian & Xue, Xuanke & Wu, Xiaorong & Zhang, Xuemei & Li, Hui & Zhang, Xudong & Han, Qingfang, 2021. "Stable oxygen isotope analysis of the water uptake mechanism via the roots in spring maize under the ridge–furrow rainwater harvesting system in a semi-arid region," Agricultural Water Management, Elsevier, vol. 252(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. White, D. A. & Dunin, F. X. & Turner, N. C. & Ward, B. H. & Galbraith, J. H., 2002. "Water use by contour-planted belts of trees comprised of four Eucalyptus species," Agricultural Water Management, Elsevier, vol. 53(1-3), pages 133-152, February.
    2. Ong, C. K. & Wilson, J. & Deans, J. D. & Mulayta, J. & Raussen, T. & Wajja-Musukwe, N., 2002. "Tree-crop interactions: manipulation of water use and root function," Agricultural Water Management, Elsevier, vol. 53(1-3), pages 171-186, February.
    3. Liu, Zhen & Ma, Feng-yun & Hu, Tong-xi & Zhao, Kai-guang & Gao, Tian-ping & Zhao, Hong-xiang & Ning, Tang-yuan, 2020. "Using stable isotopes to quantify water uptake from different soil layers and water use efficiency of wheat under long-term tillage and straw return practices," Agricultural Water Management, Elsevier, vol. 229(C).
    4. Minhas, P.S. & Yadav, R.K. & Bali, Aradhana, 2020. "Perspectives on reviving waterlogged and saline soils through plantation forestry," Agricultural Water Management, Elsevier, vol. 232(C).
    5. Minhas, P.S. & Yadav, R.K. & Lal, K. & Chaturvedi, R.K., 2015. "Effect of long-term irrigation with wastewater on growth, biomass production and water use by Eucalyptus (Eucalyptus tereticornis Sm.) planted at variable stocking density," Agricultural Water Management, Elsevier, vol. 152(C), pages 151-160.
    6. Zhang, Rongfei & Xu, Xianli & Liu, Meixian & Zhang, Yaohua & Xu, Chaohao & Yi, Ruzhou & Luo, Wei, 2018. "Comparing ET-VPD hysteresis in three agroforestry ecosystems in a subtropical humid karst area," Agricultural Water Management, Elsevier, vol. 208(C), pages 454-464.
    7. Cao, Xiaoqing & Yang, Peiling & Engel, Bernard A. & Li, Pingfeng, 2018. "The effects of rainfall and irrigation on cherry root water uptake under drip irrigation," Agricultural Water Management, Elsevier, vol. 197(C), pages 9-18.
    8. Zhang, Rongfei & Xu, Xianli & Guo, Jingsong & Sheng, Zhuping, 2022. "Multi-model ensemble approaches for simulation of evapotranspiration of karst agroforestry ecosystems," Agricultural Water Management, Elsevier, vol. 273(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:97:y:2010:i:3:p:475-482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.