IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v197y2022ics0308521x22000026.html
   My bibliography  Save this article

Strategies to double milk production per farm in Argentina: Investment, economics and risk analysis

Author

Listed:
  • Baudracco, Javier
  • Lazzarini, Belén
  • Rossler, Noelia
  • Gastaldi, Laura
  • Jauregui, José
  • Fariña, Santiago

Abstract

Demand for dairy products is expected to continue driving intensification in dairy systems. Little is known about the productive and economic performance and risk of intensification strategies either within grazing systems or confinement dairy systems in Argentina.cu

Suggested Citation

  • Baudracco, Javier & Lazzarini, Belén & Rossler, Noelia & Gastaldi, Laura & Jauregui, José & Fariña, Santiago, 2022. "Strategies to double milk production per farm in Argentina: Investment, economics and risk analysis," Agricultural Systems, Elsevier, vol. 197(C).
  • Handle: RePEc:eee:agisys:v:197:y:2022:i:c:s0308521x22000026
    DOI: 10.1016/j.agsy.2022.103366
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X22000026
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2022.103366?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marra, Michele & Pannell, David J. & Abadi Ghadim, Amir, 2003. "The economics of risk, uncertainty and learning in the adoption of new agricultural technologies: where are we on the learning curve?," Agricultural Systems, Elsevier, vol. 75(2-3), pages 215-234.
    2. Ford, Stephen A. & Ford, Beth Pride & Spreen, Thomas H., 1995. "Evaluation Of Alternative Risk Specifications In Farm Programming Models," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 24(1), pages 1-11, April.
    3. Fariña, S.R. & Alford, A. & Garcia, S.C. & Fulkerson, W.J., 2013. "An integrated assessment of business risk for pasture-based dairy farm systems intensification," Agricultural Systems, Elsevier, vol. 115(C), pages 10-20.
    4. Khanal, Aditya R. & Gillespie, Jeffrey M. & MacDonald, James M., 2010. "Adoption of Technology, Management Practices, and Production Systems in U.S. Milk Production," 2010 Annual Meeting, February 6-9, 2010, Orlando, Florida 56496, Southern Agricultural Economics Association.
    5. McCown, R. L. & Hammer, G. L. & Hargreaves, J. N. G. & Holzworth, D. P. & Freebairn, D. M., 1996. "APSIM: a novel software system for model development, model testing and simulation in agricultural systems research," Agricultural Systems, Elsevier, vol. 50(3), pages 255-271.
    6. Beukes, Pierre C. & Romera, Alvaro J. & Neal, Mark & Mashlan, Kim, 2019. "Performance of pasture-based dairy systems subject to economic, climatic and regulatory uncertainty," Agricultural Systems, Elsevier, vol. 174(C), pages 95-104.
    7. Fariña, S.R. & Chilibroste, P., 2019. "Opportunities and challenges for the growth of milk production from pasture: The case of farm systems in Uruguay," Agricultural Systems, Elsevier, vol. 176(C).
    8. Evans, R.D. & Wallace, M. & Shalloo, L. & Garrick, D.J. & Dillon, P., 2006. "Financial implications of recent declines in reproduction and survival of Holstein-Friesian cows in spring-calving Irish dairy herds," Agricultural Systems, Elsevier, vol. 89(1), pages 165-183, July.
    9. Ojeda, J.J. & Pembleton, K.G. & Islam, M.R. & Agnusdei, M.G. & Garcia, S.C., 2016. "Evaluation of the agricultural production systems simulator simulating Lucerne and annual ryegrass dry matter yield in the Argentine Pampas and south-eastern Australia," Agricultural Systems, Elsevier, vol. 143(C), pages 61-75.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kalaitan, Tetyana & Stybel, Volodymyr & Hrymak, Oleh & Sarakhman, Oksana & Shurpenkova, Ruslana, 2023. "State Support of the Dairy Industry and Prospects for its Development in the Post-War Period," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 9(3), January.
    2. Kalaitan, Tetyana & Stybel, Volodymyr & Hrymak, Oleh & Sarakhman, Oksana & Shurpenkova, Ruslana, 2023. "State support of the dairy industry and prospects for its development in the post-war period," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 9(3), September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Komarek, Adam M. & De Pinto, Alessandro & Smith, Vincent H., 2020. "A review of types of risks in agriculture: What we know and what we need to know," Agricultural Systems, Elsevier, vol. 178(C).
    2. Stirling, Sofía & Fariña, Santiago & Pacheco, David & Vibart, Ronaldo, 2021. "Whole-farm modelling of grazing dairy systems in Uruguay," Agricultural Systems, Elsevier, vol. 193(C).
    3. Emma Jane Dillon & Thia Hennessy & Peter Howley & John Cullinan & Kevin Heanue & Anthony Cawley, 2018. "Routine inertia and reactionary response in animal health best practice," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 35(1), pages 207-221, March.
    4. Fariña, S.R. & Alford, A. & Garcia, S.C. & Fulkerson, W.J., 2013. "An integrated assessment of business risk for pasture-based dairy farm systems intensification," Agricultural Systems, Elsevier, vol. 115(C), pages 10-20.
    5. Asci, Serhat & Borisova, Tatiana & VanSickle, John J., 2015. "Role of economics in developing fertilizer best management practices," Agricultural Water Management, Elsevier, vol. 152(C), pages 251-261.
    6. Giuseppe Maggio & Marina Mastrorillo & Nicholas J. Sitko, 2022. "Adapting to High Temperatures: Effect of Farm Practices and Their Adoption Duration on Total Value of Crop Production in Uganda," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(1), pages 385-403, January.
    7. Greiner, Romy & Miller, Owen & Patterson, Louisa, 2008. "The role of grazier motivations and risk attitudes in the adoption of grazing best management practices," 2008 Conference (52nd), February 5-8, 2008, Canberra, Australia 6002, Australian Agricultural and Resource Economics Society.
    8. Bensch, Gunther & Grimm, Michael, 2024. "Behavioural constraints in energy technology uptake: Evidence from real-purchase offers in rural Rwanda and Senegal," Ruhr Economic Papers 1081, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    9. Yunfeng Li & Quanqing Feng & Dongwei Li & Mingfa Li & Huifeng Ning & Qisheng Han & Abdoul Kader Mounkaila Hamani & Yang Gao & Jingsheng Sun, 2022. "Water-Salt Thresholds of Cotton ( Gossypium hirsutum L.) under Film Drip Irrigation in Arid Saline-Alkali Area," Agriculture, MDPI, vol. 12(11), pages 1-21, October.
    10. Aude Ridier & Caroline Roussy & Karim Chaib, 2021. "Adoption of crop diversification by specialized grain farmers in south-western France: evidence from a choice-modelling experiment," Review of Agricultural, Food and Environmental Studies, Springer, vol. 102(3), pages 265-283, September.
    11. Senthold Asseng & David Pannell, 2013. "Adapting dryland agriculture to climate change: Farming implications and research and development needs in Western Australia," Climatic Change, Springer, vol. 118(2), pages 167-181, May.
    12. Nasca, J.A. & Feldkamp, C.R. & Arroquy, J.I. & Colombatto, D., 2015. "Efficiency and stability in subtropical beef cattle grazing systems in the northwest of Argentina," Agricultural Systems, Elsevier, vol. 133(C), pages 85-96.
    13. Javad Torkamani & Shahrokh Shajari, 2008. "Adoption of New Irrigation Technology Under Production Risk," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(2), pages 229-237, February.
    14. Jackson, T.M. & Hanjra, Munir A. & Khan, S. & Hafeez, M.M., 2011. "Building a climate resilient farm: A risk based approach for understanding water, energy and emissions in irrigated agriculture," Agricultural Systems, Elsevier, vol. 104(9), pages 729-745.
    15. Caroline Roussy & Aude Ridier & Karim Chaïb, 2014. "Adoption d’innovations par les agriculteurs : rôle des perceptions et des préférences," Post-Print hal-01123427, HAL.
    16. Qureshi, Muhammad Ejaz & Arunakumaren, J. & Bajracharya, K. & Wegener, Malcolm K. & Qureshi, S.E. & Bristow, Keith L., 2002. "Economic and environmental impacts of groundwater management scenarios in Burdekin Delta," 2002 Conference (46th), February 13-15, 2002, Canberra, Australia 125148, Australian Agricultural and Resource Economics Society.
    17. Morais, G. & Braga, J.M., 2018. "Irrigation and farm efficiency in Brazil," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 275987, International Association of Agricultural Economists.
    18. Viaggi, Davide & Raggi, Meri & Gomez y Paloma, Sergio, 2011. "Farm-household investment behaviour and the CAP decoupling: Methodological issues in assessing policy impacts," Journal of Policy Modeling, Elsevier, vol. 33(1), pages 127-145, January.
    19. Negm, L.M. & Youssef, M.A. & Skaggs, R.W. & Chescheir, G.M. & Jones, J., 2014. "DRAINMOD–DSSAT model for simulating hydrology, soil carbon and nitrogen dynamics, and crop growth for drained crop land," Agricultural Water Management, Elsevier, vol. 137(C), pages 30-45.
    20. Micheels, Eric T. & Nolan, James F., 2016. "Examining the effects of absorptive capacity and social capital on the adoption of agricultural innovations: A Canadian Prairie case study," Agricultural Systems, Elsevier, vol. 145(C), pages 127-138.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:197:y:2022:i:c:s0308521x22000026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.