IDEAS home Printed from https://ideas.repec.org/p/ags/aare02/125148.html
   My bibliography  Save this paper

Economic and environmental impacts of groundwater management scenarios in Burdekin Delta

Author

Listed:
  • Qureshi, Muhammad Ejaz
  • Arunakumaren, J.
  • Bajracharya, K.
  • Wegener, Malcolm K.
  • Qureshi, S.E.
  • Bristow, Keith L.

Abstract

The Burdekin delta in north Queensland is the most important area for irrigated sugarcane production in Australia. Conjunctive use of groundwater and surface water is a common practice in this area, and requires that the groundwater systems be carefully managed to ensure the long-term economic and environmental well being of the whole region. Management of the system requires that sufficient water be provided to the crops grown in the area while maintaining sufficient pressure in the groundwater system to minimise potential problems associated with salt water intrusion. A groundwater management model is being developed to help address these issues by simulating the behaviour of the groundwater system in response to various management strategies. The output from the groundwater model along with data from a plant growth simulation model has been used as input to a regional mathematical programming model, to examine the economic and environmental impacts of various groundwater management strategies in the delta region.

Suggested Citation

  • Qureshi, Muhammad Ejaz & Arunakumaren, J. & Bajracharya, K. & Wegener, Malcolm K. & Qureshi, S.E. & Bristow, Keith L., 2002. "Economic and environmental impacts of groundwater management scenarios in Burdekin Delta," 2002 Conference (46th), February 13-15, 2002, Canberra, Australia 125148, Australian Agricultural and Resource Economics Society.
  • Handle: RePEc:ags:aare02:125148
    DOI: 10.22004/ag.econ.125148
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/125148/files/Qureshi1.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.125148?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chewings, R.A. & Pascoe, Sean, 1988. "Demand For Water in the Murray Valley, New South Wales: An Application of Linear Programming," 1988 Conference (32nd), February 8-11, 1988, Melbourne, Australia 143791, Australian Agricultural and Resource Economics Society.
    2. Wossink, G. A. A. & de Koeijer, T. J. & Renkema, J. A., 1992. "Environmental-economic policy assessment: A farm economic approach," Agricultural Systems, Elsevier, vol. 39(4), pages 421-438.
    3. Qureshi, Muhammad Ejaz & Mallawaarachchi, Thilak & Wegener, Malcolm K. & Bristow, Keith L. & Charlesworth, Philip B. & Lisson, Shaun N., 2001. "Economic evaluation of alternative irrigation practices for sugarcane production in the Burdekin Delta," 2001 Conference (45th), January 23-25, 2001, Adelaide, Australia 125867, Australian Agricultural and Resource Economics Society.
    4. McCown, R. L. & Hammer, G. L. & Hargreaves, J. N. G. & Holzworth, D. P. & Freebairn, D. M., 1996. "APSIM: a novel software system for model development, model testing and simulation in agricultural systems research," Agricultural Systems, Elsevier, vol. 50(3), pages 255-271.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qureshi, Muhammad Ejaz & Mallawaarachchi, Thilak & Wegener, Malcolm K. & Bristow, Keith L. & Charlesworth, Philip B. & Lisson, Shaun N., 2001. "Economic evaluation of alternative irrigation practices for sugarcane production in the Burdekin Delta," 2001 Conference (45th), January 23-25, 2001, Adelaide, Australia 125867, Australian Agricultural and Resource Economics Society.
    2. M. Qureshi & S. Qureshi & K. Bajracharya & M. Kirby, 2008. "Integrated Biophysical and Economic ModellingFramework to Assess Impacts of Alternative Groundwater Management Options," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(3), pages 321-341, March.
    3. Yunfeng Li & Quanqing Feng & Dongwei Li & Mingfa Li & Huifeng Ning & Qisheng Han & Abdoul Kader Mounkaila Hamani & Yang Gao & Jingsheng Sun, 2022. "Water-Salt Thresholds of Cotton ( Gossypium hirsutum L.) under Film Drip Irrigation in Arid Saline-Alkali Area," Agriculture, MDPI, vol. 12(11), pages 1-21, October.
    4. Janssen, Sander & van Ittersum, Martin K., 2007. "Assessing farm innovations and responses to policies: A review of bio-economic farm models," Agricultural Systems, Elsevier, vol. 94(3), pages 622-636, June.
    5. Negm, L.M. & Youssef, M.A. & Skaggs, R.W. & Chescheir, G.M. & Jones, J., 2014. "DRAINMOD–DSSAT model for simulating hydrology, soil carbon and nitrogen dynamics, and crop growth for drained crop land," Agricultural Water Management, Elsevier, vol. 137(C), pages 30-45.
    6. Jing Wang & Feng Fang & Qiang Zhang & Jinsong Wang & Yubi Yao & Wei Wang, 2016. "Risk evaluation of agricultural disaster impacts on food production in southern China by probability density method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1605-1634, September.
    7. Jagadish Padhiary & Kanhu Charan Patra & Sonam Sandeep Dash, 2022. "A Novel Approach to Identify the Characteristics of Drought under Future Climate Change Scenario," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5163-5189, October.
    8. Mallawaarachchi, Thilak, 2002. "Assessing Best-Practice Environmental Management Options at the decision scale: a model for technology choice and policy analysis," 2002 Conference (46th), February 13-15, 2002, Canberra, Australia 125136, Australian Agricultural and Resource Economics Society.
    9. Feike, Til & Henseler, Martin, 2017. "Multiple Policy Instruments for Sustainable Water Management in Crop Production - A Modeling Study for the Chinese Aksu-Tarim Region," Ecological Economics, Elsevier, vol. 135(C), pages 42-54.
    10. Unknown, 1997. "A New Soil Conservation Methodology and Application to Cropping Systems in Tropical Steeplands: A comparative synthesis of results obtained in ACIAR Project PN 9201," Technical Reports 113906, Australian Centre for International Agricultural Research.
    11. Meinke, H. & Baethgen, W. E. & Carberry, P. S. & Donatelli, M. & Hammer, G. L. & Selvaraju, R. & Stockle, C. O., 2001. "Increasing profits and reducing risks in crop production using participatory systems simulation approaches," Agricultural Systems, Elsevier, vol. 70(2-3), pages 493-513.
    12. Bouzaher, Aziz & Shogren, Jason F. & Holtkamp, Derald & Gassman, Philip & Archer, David & Lakshminarayan, P. & Carriquiry, Alicia & Reese, Randall & Kakani, Dharmaraju & Furtan, William H. & Izaurrald, 1995. "Agricultural Policies and Soil Degradation in Western Canada: An Agro-Ecological Economic Assessment (Report 5: Project Summary)," Technical Reports 243858, Agriculture and Agri-Food Canada.
    13. Probert, M. E. & Dimes, J. P. & Keating, B. A. & Dalal, R. C. & Strong, W. M., 1998. "APSIM's water and nitrogen modules and simulation of the dynamics of water and nitrogen in fallow systems," Agricultural Systems, Elsevier, vol. 56(1), pages 1-28, January.
    14. Cabelguenne, M. & Debaeke, P. & Bouniols, A., 1999. "EPICphase, a version of the EPIC model simulating the effects of water and nitrogen stress on biomass and yield, taking account of developmental stages: validation on maize, sunflower, sorghum, soybea," Agricultural Systems, Elsevier, vol. 60(3), pages 175-196, June.
    15. Lakshminarayan, P. G., 1993. "Tradeoffs in balancing multiple objectives of an integrated agricultural economic and environmental system," ISU General Staff Papers 1993010108000011833, Iowa State University, Department of Economics.
    16. Chauhdary, Junaid Nawaz & Li, Hong & Akbar, Nadeem & Javaid, Maria & Rizwan, Muhammad & Akhlaq, Muhammad, 2024. "Evaluating corn production under different plant spacings through integrated modeling approach and simulating its future response under climate change scenarios," Agricultural Water Management, Elsevier, vol. 293(C).
    17. Anwar, Muhuddin Rajin & Liu, De Li & Farquharson, Robert & Macadam, Ian & Abadi, Amir & Finlayson, John & Wang, Bin & Ramilan, Thiagarajah, 2015. "Climate change impacts on phenology and yields of five broadacre crops at four climatologically distinct locations in Australia," Agricultural Systems, Elsevier, vol. 132(C), pages 133-144.
    18. Jha, Pramod & Lakaria, Brij Lal & Vishwakarma, AK & Wanjari, RH & Mohanty, M & Sinha, Nishant K & Somasundaram, J & Dheri, GS & Dwivedi, AK & Sharma, Raj Paul & Singh, Muneshwar & Dalal, RC & Biswas, , 2021. "Modeling the organic carbon dynamics in long-term fertilizer experiments of India using the Rothamsted carbon model," Ecological Modelling, Elsevier, vol. 450(C).
    19. Graham R. Marshall & Kevin A. Parton & G.L. Hammer, 1996. "Risk Attitude, Planting Conditions And The Value Of Seasonal Forecasts To A Dryland Wheat Grower," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 40(3), pages 211-233, December.
    20. Thomas, N., 2021. "Alternative Crop Management Methods to Increase Crop Productivity and Farmer Utility," 2021 Conference, August 17-31, 2021, Virtual 315042, International Association of Agricultural Economists.

    More about this item

    Keywords

    Environmental Economics and Policy;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aare02:125148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaresea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.