IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v168y2019icp73-87.html
   My bibliography  Save this article

Agro-environmental aspects of conservation agriculture compared to conventional systems: A 3-year experience on 20 farms in the Po valley (Northern Italy)

Author

Listed:
  • Perego, A.
  • Rocca, A.
  • Cattivelli, V.
  • Tabaglio, V.
  • Fiorini, A.
  • Barbieri, S.
  • Schillaci, C.
  • Chiodini, M.E.
  • Brenna, S.
  • Acutis, M.

Abstract

An evaluation of the effect of the conservation agriculture (CA) on agro-environmental aspects is needed at the farm scale in intensive production systems, which are likely prone to reduce soil fertility. Here, as part of the HelpSoil LIFE+ Project and involving 20 farms in the Po valley (Northern Italy), we have estimated the soil organic carbon (SOC) content, SOC stock, crop yield, biological fertility, soil biodiversity, and economic efficiency under different agricultural systems (CA and conventional, CvtA) at the beginning (March 2014) and end (October 2016) of the experimental period. CA was mostly represented by no-till practice (NT) coupled with the cultivation of winter cover crops. Minimum tillage (MT) was considered as CA or CvtA practice according to the farm design. The CA practices have been implemented on the monitored farms at different times (Long-term = before 2006, Medium-term = between 2006 and 2013, Short-term = after 2013). A direct comparison between CA and CvtA of soil-related variables, yields, and costs was performed on 14 out of the 20 farms; data were statistically treated with a linear mixed model. Overall, CA resulted in significantly higher SOC content, SOC stock, biological fertility, QBS-ar, and earthworms for the Medium-term group. Considering the effect of tillage practices observed on the 20 farms, SOC content was the highest in NT for the Long-term group. The biological fertility index was higher in NT and MT compared to CvtA within the Long-term and Medium-term groups in 2016. QBS-ar was the higher in MT and NT than CvtA for the Long-term and Medium-Term groups. The number of earthworms was the highest under NT for the Long-term group. Maize, winter wheat, and soybeans yields were generally 1 t ha−1 higher in CvtA than in CA, but this did not reach statistical significance. The cost for herbicides was 18% more expensive in NT, whereas the fuel consumption and total costs for weeding operations did not differ between NT and CvtA. The overall outcome of the analysis was that CA is a viable solution for intensive farms in the monitored area, but further skills need still to be acquired in to enhance its economic feasibility.

Suggested Citation

  • Perego, A. & Rocca, A. & Cattivelli, V. & Tabaglio, V. & Fiorini, A. & Barbieri, S. & Schillaci, C. & Chiodini, M.E. & Brenna, S. & Acutis, M., 2019. "Agro-environmental aspects of conservation agriculture compared to conventional systems: A 3-year experience on 20 farms in the Po valley (Northern Italy)," Agricultural Systems, Elsevier, vol. 168(C), pages 73-87.
  • Handle: RePEc:eee:agisys:v:168:y:2019:i:c:p:73-87
    DOI: 10.1016/j.agsy.2018.10.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X1830430X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2018.10.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jarrad Farris & Catherine Larochelle & Jeffrey Alwang & George W. Norton & Caleb King, 2017. "Poverty analysis using small area estimation: an application to conservation agriculture in Uganda," Agricultural Economics, International Association of Agricultural Economists, vol. 48(6), pages 671-681, November.
    2. Nguyen, Thi Phuoc Lai & Seddaiu, Giovanna & Virdis, Salvatore Gonario Pasquale & Tidore, Camillo & Pasqui, Massimiliano & Roggero, Pier Paolo, 2016. "Perceiving to learn or learning to perceive? Understanding farmers' perceptions and adaptation to climate uncertainties," Agricultural Systems, Elsevier, vol. 143(C), pages 205-216.
    3. Schindler, Jana & Graef, Frieder & König, Hannes Jochen, 2016. "Participatory impact assessment: Bridging the gap between scientists' theory and farmers' practice," Agricultural Systems, Elsevier, vol. 148(C), pages 38-43.
    4. Knowler, Duncan & Bradshaw, Ben, 2007. "Farmers' adoption of conservation agriculture: A review and synthesis of recent research," Food Policy, Elsevier, vol. 32(1), pages 25-48, February.
    5. Brown, Brendan & Nuberg, Ian & Llewellyn, Rick, 2017. "Stepwise frameworks for understanding the utilisation of conservation agriculture in Africa," Agricultural Systems, Elsevier, vol. 153(C), pages 11-22.
    6. David S. Powlson & Clare M. Stirling & M. L. Jat & Bruno G. Gerard & Cheryl A. Palm & Pedro A. Sanchez & Kenneth G. Cassman, 2014. "Limited potential of no-till agriculture for climate change mitigation," Nature Climate Change, Nature, vol. 4(8), pages 678-683, August.
    7. Cameron M. Pittelkow & Xinqiang Liang & Bruce A. Linquist & Kees Jan van Groenigen & Juhwan Lee & Mark E. Lundy & Natasja van Gestel & Johan Six & Rodney T. Venterea & Chris van Kessel, 2015. "Productivity limits and potentials of the principles of conservation agriculture," Nature, Nature, vol. 517(7534), pages 365-368, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paula Triviño-Tarradas & Pilar Carranza-Cañadas & Francisco-Javier Mesas-Carrascosa & Emilio J. Gonzalez-Sanchez, 2020. "Evaluation of Agricultural Sustainability on a Mixed Vineyard and Olive-Grove Farm in Southern Spain through the INSPIA Model," Sustainability, MDPI, vol. 12(3), pages 1-22, February.
    2. Calogero Schillaci & Tommaso Tadiello & Marco Acutis & Alessia Perego, 2021. "Reducing Topdressing N Fertilization with Variable Rates Does Not Reduce Maize Yield," Sustainability, MDPI, vol. 13(14), pages 1-14, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wondimagegn Tesfaye & Garrick Blalock & Nyasha Tirivayi, 2021. "Climate‐Smart Innovations and Rural Poverty in Ethiopia: Exploring Impacts and Pathways," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 878-899, May.
    2. Francesco Calzarano & Fabio Stagnari & Sara D’Egidio & Giancarlo Pagnani & Angelica Galieni & Stefano Di Marco & Elisa Giorgia Metruccio & Michele Pisante, 2018. "Durum Wheat Quality, Yield and Sanitary Status under Conservation Agriculture," Agriculture, MDPI, vol. 8(9), pages 1-13, September.
    3. Bhim Bahadur Ghaley & Teodor Rusu & Taru Sandén & Heide Spiegel & Cristina Menta & Giovanna Visioli & Lilian O’Sullivan & Isabelle Trinsoutrot Gattin & Antonio Delgado & Mark A. Liebig & Dirk Vrebos &, 2018. "Assessment of Benefits of Conservation Agriculture on Soil Functions in Arable Production Systems in Europe," Sustainability, MDPI, vol. 10(3), pages 1-17, March.
    4. Oscar Montes de Oca Munguia & Rick Llewellyn, 2020. "The Adopters versus the Technology: Which Matters More when Predicting or Explaining Adoption?," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 42(1), pages 80-91, March.
    5. Lalani, Baqir & Aminpour, Payam & Gray, Steven & Williams, Meredith & Büchi, Lucie & Haggar, Jeremy & Grabowski, Philip & Dambiro, José, 2021. "Mapping farmer perceptions, Conservation Agriculture practices and on-farm measurements: The role of systems thinking in the process of adoption," Agricultural Systems, Elsevier, vol. 191(C).
    6. Tambo, J. & Mockshell, J., 2018. "Differential impacts of conservation agriculture technology options on household welfare in sub-Saharan Africa," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277035, International Association of Agricultural Economists.
    7. Adam M. Komarek, 2018. "Conservation agriculture in western China increases productivity and profits without decreasing resilience," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(5), pages 1251-1262, October.
    8. Kim S. Alexander & Garry Greenhalgh & Magnus Moglia & Manithaythip Thephavanh & Phonevilay Sinavong & Silva Larson & Tom Jovanovic & Peter Case, 2020. "What is technology adoption? Exploring the agricultural research value chain for smallholder farmers in Lao PDR," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 37(1), pages 17-32, March.
    9. Liangang Xiao & Minglei Ding & Chong Wei & Ruiming Zhu & Rongqin Zhao, 2020. "The Impacts of Conservation Agriculture on Water Use and Crop Production on the Loess Plateau: From Know-What to Know-Why," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    10. Christian Thierfelder & Pauline Chivenge & Walter Mupangwa & Todd S. Rosenstock & Christine Lamanna & Joseph X. Eyre, 2017. "How climate-smart is conservation agriculture (CA)? – its potential to deliver on adaptation, mitigation and productivity on smallholder farms in southern Africa," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(3), pages 537-560, June.
    11. Ward, Patrick S. & Mapemba, Lawrence & Bell, Andrew R., 2021. "Smart subsidies for sustainable soils: Evidence from a randomized controlled trial in southern Malawi," Journal of Environmental Economics and Management, Elsevier, vol. 110(C).
    12. Tambo, Justice A. & Mockshell, Jonathan, 2018. "Differential Impacts of Conservation Agriculture Technology Options on Household Income in Sub-Saharan Africa," Ecological Economics, Elsevier, vol. 151(C), pages 95-105.
    13. Brown, Brendan & Nuberg, Ian & Llewellyn, Rick, 2018. "Constraints to the utilisation of conservation agriculture in Africa as perceived by agricultural extension service providers," Land Use Policy, Elsevier, vol. 73(C), pages 331-340.
    14. Kirui, Oliver & Tambo, Justice, 2021. "Yield Effects of Conservation Agriculture Under Fall Armyworm Stress: The Case of Zambia," 2021 Conference, August 17-31, 2021, Virtual 315882, International Association of Agricultural Economists.
    15. Gao, Li & Zhang, Wendong & Mei, Yingdan & Sam, Abdoul G. & Song, Yu & Jin, Shuqin, 2018. "Do farmers adopt fewer conservation practices on rented land? Evidence from straw retention in China," Land Use Policy, Elsevier, vol. 79(C), pages 609-621.
    16. Lalani, Baqir & Dorward, Peter & Holloway, Garth & Wauters, Erwin, 2016. "Smallholder farmers' motivations for using Conservation Agriculture and the roles of yield, labour and soil fertility in decision making," Agricultural Systems, Elsevier, vol. 146(C), pages 80-90.
    17. Jing Tian & Jennifer A. J. Dungait & Ruixing Hou & Ye Deng & Iain P. Hartley & Yunfeng Yang & Yakov Kuzyakov & Fusuo Zhang & M. Francesca Cotrufo & Jizhong Zhou, 2024. "Microbially mediated mechanisms underlie soil carbon accrual by conservation agriculture under decade-long warming," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    18. De los Santos-Montero, Luis A. & Bravo-Ureta, Boris E. & von Cramon-Taubadel, Stephan & Hasiner, Eva, 2020. "The performance of natural resource management interventions in agriculture: Evidence from alternative meta-regression analyses," Ecological Economics, Elsevier, vol. 171(C).
    19. Andrea D Basche & Marcia S DeLonge, 2019. "Comparing infiltration rates in soils managed with conventional and alternative farming methods: A meta-analysis," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-22, September.
    20. Andreas Scheba, 2017. "Conservation agriculture and sustainable development in Africa: insights from Tanzania," Natural Resources Forum, Blackwell Publishing, vol. 41(4), pages 209-219, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:168:y:2019:i:c:p:73-87. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.