IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i5p638-d802403.html
   My bibliography  Save this article

Ecological Risk Assessment of Transboundary Region Based on Land-Cover Change: A Case Study of Gandaki River Basin, Himalayas

Author

Listed:
  • Bohao Cui

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Yili Zhang

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Zhaofeng Wang

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Changjun Gu

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Linshan Liu

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Bo Wei

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Dianqing Gong

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Mohan Kumar Rai

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

Land-cover change is a major cause of global ecosystem degradation, a severe threat to sustainable development and human welfare. In mountainous regions that cross national political boundaries, sensitive and fragile ecosystems are under complex disturbance pressures. Land-cover change may further exacerbate ecological risks in these regions. However, few studies have assessed the ecological risks in transboundary areas. This study focused on the Gandaki Basin (GRB), a typical transboundary region in the Himalayas. Based on the dynamic change in land cover, the landscape ecological risk index (ERI) model was constructed to assess the ecological risk in the GRB, revealing the evolution characteristics and spatial correlation of such a risk during the period 1990–2020. The results showed that all land cover types in the GRB have changed over the last 30 years. The interconversion of cropland and forestland was a distinctive feature in all periods. Overall, the medium and medium to low ecological risk level areas account for approximately 65% of the study area. The areas of high ecological risk were mainly distributed in the high elevation mountains of the northern Himalayas, while the low risk areas were located in the other mountains and hills of Nepal. In addition, the ecological risk in the Gandaki basin has shown a fluctuating trend of increasing over the past 30 years. However, there were different phases, with the order of ecological risk being 2020 > 2000 > 2010 > 1990. Ecological risks displayed positive spatial correlation and aggregation characteristics across periods. The high–high risk clusters were primarily located in the high and medium high ecological risk areas, while the low–low risk clusters were similar to low risk levels region. The findings provided the reference for ecosystem conservation and landscape management in transboundary areas.

Suggested Citation

  • Bohao Cui & Yili Zhang & Zhaofeng Wang & Changjun Gu & Linshan Liu & Bo Wei & Dianqing Gong & Mohan Kumar Rai, 2022. "Ecological Risk Assessment of Transboundary Region Based on Land-Cover Change: A Case Study of Gandaki River Basin, Himalayas," Land, MDPI, vol. 11(5), pages 1-22, April.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:5:p:638-:d:802403
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/5/638/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/5/638/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Oh-Sung Kwon & Jin-Hyo Kim & Jung-Hwa Ra, 2021. "Landscape Ecological Analysis of Green Network in Urban Area Using Circuit Theory and Least-Cost Path," Land, MDPI, vol. 10(8), pages 1-23, August.
    2. Simon Tilleard & James Ford, 2016. "Adaptation readiness and adaptive capacity of transboundary river basins," Climatic Change, Springer, vol. 137(3), pages 575-591, August.
    3. Palazzoli, I. & Maskey, S. & Uhlenbrook, S. & Nana, E. & Bocchiola, D., 2015. "Impact of prospective climate change on water resources and crop yields in the Indrawati basin, Nepal," Agricultural Systems, Elsevier, vol. 133(C), pages 143-157.
    4. Li, Shicheng & Zhang, Yili & Wang, Zhaofeng & Li, Lanhui, 2018. "Mapping human influence intensity in the Tibetan Plateau for conservation of ecological service functions," Ecosystem Services, Elsevier, vol. 30(PB), pages 276-286.
    5. repec:idb:brikps:6883 is not listed on IDEAS
    6. Changjun Gu & Yili Zhang & Linshan Liu & Lanhui Li & Shicheng Li & Binghua Zhang & Bohao Cui & Mohan Kumar Rai, 2021. "Correction: Gu et al. Qualifying Land Use and Land Cover Dynamics and Their Impacts on Ecosystem Service in Central Himalaya Transboundary Landscape Based on Google Earth Engine. Land 2021, 10 , 173," Land, MDPI, vol. 10(5), pages 1-1, May.
    7. Galen Murton, 2017. "Making Mountain Places into State Spaces: Infrastructure, Consumption, and Territorial Practice in a Himalayan Borderland," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 107(2), pages 536-545, March.
    8. Raju Rai & Yili Zhang & Basanta Paudel & Narendra Raj Khanal, 2019. "Status of Farmland Abandonment and Its Determinants in the Transboundary Gandaki River Basin," Sustainability, MDPI, vol. 11(19), pages 1-18, September.
    9. Changjun Gu & Yili Zhang & Linshan Liu & Lanhui Li & Shicheng Li & Binghua Zhang & Bohao Cui & Mohan Kumar Rai, 2021. "Qualifying Land Use and Land Cover Dynamics and Their Impacts on Ecosystem Service in Central Himalaya Transboundary Landscape Based on Google Earth Engine," Land, MDPI, vol. 10(2), pages 1-21, February.
    10. de Castro-Pardo, Mónica & Pérez-Rodríguez, Fernando & Martín-Martín, José María & Azevedo, João C., 2019. "Modelling stakeholders’ preferences to pinpoint conflicts in the planning of transboundary protected areas," Land Use Policy, Elsevier, vol. 89(C).
    11. Rimal, Bhagawat & Sharma, Roshan & Kunwar, Ripu & Keshtkar, Hamidreza & Stork, Nigel E. & Rijal, Sushila & Rahman, Syed Ajijur & Baral, Himlal, 2019. "Effects of land use and land cover change on ecosystem services in the Koshi River Basin, Eastern Nepal," Ecosystem Services, Elsevier, vol. 38(C), pages 1-1.
    12. Bhagawat Rimal & Himlal Baral & Nigel E. Stork & Kiran Paudyal & Sushila Rijal, 2015. "Growing City and Rapid Land Use Transition: Assessing Multiple Hazards and Risks in the Pokhara Valley, Nepal," Land, MDPI, vol. 4(4), pages 1-22, October.
    13. Jialin Li & Ruiliang Pu & Hongbo Gong & Xu Luo & Mengyao Ye & Baixiang Feng, 2017. "Evolution Characteristics of Landscape Ecological Risk Patterns in Coastal Zones in Zhejiang Province, China," Sustainability, MDPI, vol. 9(4), pages 1-18, April.
    14. Raju Rai & Yili Zhang & Basanta Paudel & Bipin Kumar Acharya & Laxmi Basnet, 2018. "Land Use and Land Cover Dynamics and Assessing the Ecosystem Service Values in the Trans-Boundary Gandaki River Basin, Central Himalayas," Sustainability, MDPI, vol. 10(9), pages 1-22, August.
    15. Bocchiola, D. & Brunetti, L. & Soncini, A. & Polinelli, F. & Gianinetto, M., 2019. "Impact of climate change on agricultural productivity and food security in the Himalayas: A case study in Nepal," Agricultural Systems, Elsevier, vol. 171(C), pages 113-125.
    16. Arun Agrawal & Elinor Ostrom, 2001. "Collective Action, Property Rights, and Decentralization in Resource Use in India and Nepal," Politics & Society, , vol. 29(4), pages 485-514, December.
    17. Vicente Fretes Cibils & Teresa Ter-Minassian & J. Sebastián Scrofina & Federico Ortega & Germán Ríos & Alejandro Rasteletti & Arturo Ramírez Verdugo & Emilio Pineda & Jorge Martínez-Vázquez & Cristián, 2015. "Decentralizing Revenue in Latin America: Why and How," IDB Publications (Books), Inter-American Development Bank, number 88858 edited by Vicente Fretes Cibils & Teresa Ter-Minassian, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ziyang Wang & Peiji Shi & Jing Shi & Xuebin Zhang & Litang Yao, 2023. "Research on Land Use Pattern and Ecological Risk of Lanzhou–Xining Urban Agglomeration from the Perspective of Terrain Gradient," Land, MDPI, vol. 12(5), pages 1-20, April.
    2. Jiangfu Liao & Lina Tang & Guofan Shao, 2022. "Multi-Scenario Simulation to Predict Ecological Risk Posed by Urban Sprawl with Spontaneous Growth: A Case Study of Quanzhou," IJERPH, MDPI, vol. 19(22), pages 1-22, November.
    3. Ying Xia & Jia Li & Enhua Li & Jiajia Liu, 2023. "Analysis of the Spatial and Temporal Evolution and Driving Factors of Landscape Ecological Risk in the Four Lakes Basin on the Jianghan Plain, China," Sustainability, MDPI, vol. 15(18), pages 1-21, September.
    4. Yuzhe Wu & Chenzhuo Gu & Yingnan Zhang, 2022. "Towards Sustainable Management of Urban Ecological Space: A Zoning Approach Hybridized by Ecosystem Service Value and Ecological Risk Assessment," Land, MDPI, vol. 11(8), pages 1-19, August.
    5. Tian Liang & Fei Yang & Dan Huang & Yinchen Luo & You Wu & Chuanhao Wen, 2022. "Land-Use Transformation and Landscape Ecological Risk Assessment in the Three Gorges Reservoir Region Based on the “Production–Living–Ecological Space” Perspective," Land, MDPI, vol. 11(8), pages 1-13, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohan Kumar Rai & Basanta Paudel & Yili Zhang & Pashupati Nepal & Narendra Raj Khanal & Linshan Liu & Raju Rai, 2023. "Appraisal of Empirical Studies on Land-Use and Land-Cover Changes and Their Impact on Ecosystem Services in Nepal Himalaya," Sustainability, MDPI, vol. 15(9), pages 1-19, April.
    2. Changjun Gu & Yili Zhang & Linshan Liu & Lanhui Li & Shicheng Li & Binghua Zhang & Bohao Cui & Mohan Kumar Rai, 2021. "Qualifying Land Use and Land Cover Dynamics and Their Impacts on Ecosystem Service in Central Himalaya Transboundary Landscape Based on Google Earth Engine," Land, MDPI, vol. 10(2), pages 1-21, February.
    3. Srijana Shrestha & Khem Narayan Poudyal & Nawraj Bhattarai & Mohan B. Dangi & John J. Boland, 2022. "An Assessment of the Impact of Land Use and Land Cover Change on the Degradation of Ecosystem Service Values in Kathmandu Valley Using Remote Sensing and GIS," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    4. Md. Mostafizur Rahman & György Szabó, 2021. "Impact of Land Use and Land Cover Changes on Urban Ecosystem Service Value in Dhaka, Bangladesh," Land, MDPI, vol. 10(8), pages 1-27, July.
    5. Owais Bashir & Shabir Ahmad Bangroo & Wei Guo & Gowhar Meraj & Gebiaw T. Ayele & Nasir Bashir Naikoo & Shahid Shafai & Perminder Singh & Mohammad Muslim & Habitamu Taddese & Irfan Gani & Shafeeq Ur Ra, 2022. "Simulating Spatiotemporal Changes in Land Use and Land Cover of the North-Western Himalayan Region Using Markov Chain Analysis," Land, MDPI, vol. 11(12), pages 1-18, December.
    6. Aryal, Kishor & Maraseni, Tek & Apan, Armando, 2023. "Spatial dynamics of biophysical trade-offs and synergies among ecosystem services in the Himalayas," Ecosystem Services, Elsevier, vol. 59(C).
    7. Yi Cheng & Hui Liu & Dongmei Chen & Haimeng Liu, 2022. "Human Activity Intensity and Its Spatial-Temporal Evolution in China’s Border Areas," Land, MDPI, vol. 11(7), pages 1-19, July.
    8. Shiksha Bastola & Sanghyup Lee & Yongchul Shin & Younghun Jung, 2020. "An Assessment of Environmental Impacts on the Ecosystem Services: Study on the Bagmati Basin of Nepal," Sustainability, MDPI, vol. 12(19), pages 1-22, October.
    9. Songlin Zhou & Wei Li & Wei Zhang & Ziyuan Wang, 2023. "The Assessment of the Spatiotemporal Characteristics of the Eco-Environmental Quality in the Chishui River Basin from 2000 to 2020," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
    10. Cheng Duan & Peili Shi & Minghua Song & Xianzhou Zhang & Ning Zong & Caiping Zhou, 2019. "Land Use and Land Cover Change in the Kailash Sacred Landscape of China," Sustainability, MDPI, vol. 11(6), pages 1-15, March.
    11. B Kelsey Jack, "undated". "Market Inefficiencies and the Adoption of Agricultural Technologies in Developing Countries," CID Working Papers 50, Center for International Development at Harvard University.
    12. Meelan Thondoo & David Rojas-Rueda & Joyeeta Gupta & Daniel H. de Vries & Mark J. Nieuwenhuijsen, 2019. "Systematic Literature Review of Health Impact Assessments in Low and Middle-Income Countries," IJERPH, MDPI, vol. 16(11), pages 1-21, June.
    13. Pandit, Ram & Bevilacqua, Eddie, 2011. "Forest users and environmental impacts of community forestry in the hills of Nepal," Forest Policy and Economics, Elsevier, vol. 13(5), pages 345-352, June.
    14. Tao Hong & Ningli Liang & Haomeng Li, 2023. "Study on the Spatial and Temporal Evolution Characteristics and Driving Factors of the “Production–Living–Ecological Space” in Changfeng County," Sustainability, MDPI, vol. 15(13), pages 1-15, July.
    15. Kumar, Sushil & Kant, Shashi, 2005. "Bureaucracy and new management paradigms: modeling foresters' perceptions regarding community-based forest management in India," Forest Policy and Economics, Elsevier, vol. 7(4), pages 651-669, May.
    16. Marcinkowski, Paweł & Piniewski, Mikołaj, 2024. "Future changes in crop yield over Poland driven by climate change, increasing atmospheric CO2 and nitrogen stress," Agricultural Systems, Elsevier, vol. 213(C).
    17. Salinas Fernández, José Antonio & Guaita Martínez, José Manuel & Martín Martín, José María, 2022. "An analysis of the competitiveness of the tourism industry in a context of economic recovery following the COVID19 pandemic," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    18. Zhang, Yanjie & Pan, Ying & Li, Meng & Wang, Zhipeng & Wu, Junxi & Zhang, Xianzhou & Cao, Yanan, 2021. "Impacts of human appropriation of net primary production on ecosystem regulating services in Tibet," Ecosystem Services, Elsevier, vol. 47(C).
    19. Mark Lubell & Adam Douglas Henry & Mike McCoy, 2010. "Collaborative Institutions in an Ecology of Games," American Journal of Political Science, John Wiley & Sons, vol. 54(2), pages 287-300, April.
    20. Hari Prasad Sharma & Bhagawat Rimal & Mingxia Zhang & Sandhya Sharma & Laxman Prasad Poudyal & Sujan Maharjan & Ripu Kunwar & Prativa Kaspal & Namrata Bhandari & Laxmi Baral & Sujita Dhakal & Ashish T, 2020. "Potential Distribution of the Critically Endangered Chinese Pangolin ( Manis pentadactyla ) in Different Land Covers of Nepal: Implications for Conservation," Sustainability, MDPI, vol. 12(3), pages 1-13, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:5:p:638-:d:802403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.