IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v124y2014icp21-31.html
   My bibliography  Save this article

Productivity and efficiency analysis of maize under conservation agriculture in Zimbabwe

Author

Listed:
  • Ndlovu, Patrick V.
  • Mazvimavi, Kizito
  • An, Henry
  • Murendo, Conrad

Abstract

This study assesses the productivity and efficiency of maize production under conservation agriculture (CA). The analysis is based on a three year (2008–2010) panel sample of small holder farming households across 15 rural districts in Zimbabwe. We make a comparison of CA with alternative conventional farming methods. Our empirical strategy consists of two methods. First, using a fixed effects model, we estimate maize production functions and derive technical change estimates under CA and conventional farming. Second, we estimate a joint stochastic production frontier to compare productivity and technical efficiency between CA and conventional farming. Under CA, technical progress has been land-saving but seed and fertilizer-using, while it has been land-using but seed-saving in conventional farming. Lastly, the results of the efficiency analysis show that that farmers produce 39% more in CA compared with conventional farming, but technical efficiency levels are essentially equal in both technologies. Overall, the results show significant yield gains in CA practices and significant contributions to food production. CA is land-saving, and this is an important issue for land constrained farmers because they can still have viable food production on smaller area. However, high labor and fertilizer demands in CA present some problems in adoption amongst resource-constrained farmers.

Suggested Citation

  • Ndlovu, Patrick V. & Mazvimavi, Kizito & An, Henry & Murendo, Conrad, 2014. "Productivity and efficiency analysis of maize under conservation agriculture in Zimbabwe," Agricultural Systems, Elsevier, vol. 124(C), pages 21-31.
  • Handle: RePEc:eee:agisys:v:124:y:2014:i:c:p:21-31
    DOI: 10.1016/j.agsy.2013.10.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X13001285
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2013.10.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Battese, George E. & Coelli, Tim J., 1988. "Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data," Journal of Econometrics, Elsevier, vol. 38(3), pages 387-399, July.
    2. George Battese & D. Rao & Christopher O'Donnell, 2004. "A Metafrontier Production Function for Estimation of Technical Efficiencies and Technology Gaps for Firms Operating Under Different Technologies," Journal of Productivity Analysis, Springer, vol. 21(1), pages 91-103, January.
    3. Mazvimavi, Kizito & Twomlow, Steve, 2009. "Socioeconomic and institutional factors influencing adoption of conservation farming by vulnerable households in Zimbabwe," Agricultural Systems, Elsevier, vol. 101(1-2), pages 20-29, June.
    4. Fleur Wouterse, 2010. "Migration and technical efficiency in cereal production: evidence from Burkina Faso," Agricultural Economics, International Association of Agricultural Economists, vol. 41(5), pages 385-395, September.
    5. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    6. Haggblade, Steven & Tembo, Gelson & Donovan, Cynthia, 2004. "Household Level Financial Incentives to Adoption of Conservation Agricultural Technologies in Africa," Food Security Collaborative Working Papers 54466, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    7. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    8. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    9. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    10. Haggblade, Steven & Tembo, Gelson, 2003. "Conservation farming in Zambia:," EPTD discussion papers 108, International Food Policy Research Institute (IFPRI).
    11. George E. Battese, 1997. "A Note On The Estimation Of Cobb‐Douglas Production Functions When Some Explanatory Variables Have Zero Values," Journal of Agricultural Economics, Wiley Blackwell, vol. 48(1‐3), pages 250-252, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diao, Xinshen & Silver, Jed & Takeshima, Hiroyuki, 2016. "Agricultural mechanization and agricultural transformation:," IFPRI discussion papers 1527, International Food Policy Research Institute (IFPRI).
    2. Nelson Mango & Clifton Makate & Benjamin Hanyani-Mlambo & Shephard Siziba & Mark Lundy & Caroline Elliott, 2015. "A stochastic frontier analysis of technical efficiency in smallholder maize production in Zimbabwe: The post-fast-track land reform outlook," Cogent Economics & Finance, Taylor & Francis Journals, vol. 3(1), pages 1117189-111, December.
    3. Cechura, L. & Hockmann, H. & Malý, M. & Žáková Kroupová, Z., 2015. "Comparison of Technology and Technical Efficiency in Cereal Production among EU Countries," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 7(2), pages 1-11, June.
    4. Janna Frischen & Isabel Meza & Daniel Rupp & Katharina Wietler & Michael Hagenlocher, 2020. "Drought Risk to Agricultural Systems in Zimbabwe: A Spatial Analysis of Hazard, Exposure, and Vulnerability," Sustainability, MDPI, vol. 12(3), pages 1-23, January.
    5. Yonas T. Bahta & Henry Jordaan & Gunda Sabastain, 2020. "Agricultural Management Practices and Factors Affecting Technical Efficiency in Zimbabwe Maize Farming," Agriculture, MDPI, vol. 10(3), pages 1-14, March.
    6. Ali M. Oumer & Michael Burton & Atakelty Hailu & Amin Mugera, 2020. "Sustainable agricultural intensification practices and cost efficiency in smallholder maize farms: Evidence from Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 51(6), pages 841-856, November.
    7. Makaiko G. Khonje & Julius Manda & Petros Mkandawire & Adane Hirpa Tufa & Arega D. Alene, 2018. "Adoption and welfare impacts of multiple agricultural technologies: evidence from eastern Zambia," Agricultural Economics, International Association of Agricultural Economists, vol. 49(5), pages 599-609, September.
    8. Michler, Jeffrey D. & Baylis, Kathy & Arends-Kuenning, Mary & Mazvimavi, Kizito, 2019. "Conservation agriculture and climate resilience," Journal of Environmental Economics and Management, Elsevier, vol. 93(C), pages 148-169.
    9. Murendo, Conrad & Gwara, Simon & Mpofu, Nkululeko & Pedzisa, Tarisayi & Mazvimavi, Kizito & Chivenge, Pauline, 2016. "The adoption of a portfolio of sustainable agricultural practices by smallholder farmers in Zimbabwe," 2016 Fifth International Conference, September 23-26, 2016, Addis Ababa, Ethiopia 246383, African Association of Agricultural Economists (AAAE).
    10. John Basera & Clifton Makate & Takesure Tozooneyi, 2016. "Comprehending smallholder maize enterprises` profitability with the current maize marketing system in Zimbabwe: A case of Mazowe district," Asian Journal of Agriculture and rural Development, Asian Economic and Social Society, vol. 6(6), pages 90-105, June.
    11. Temitayo A. Adeyemo & Victor O. Okoruwa, 2018. "Value Addition and Productivity Differentials in the Nigerian Cassava System," Sustainability, MDPI, vol. 10(12), pages 1-22, December.
    12. Amankwah, Akuffo & Gwatidzo, Tendai, 2024. "Food security and poverty reduction effects of agricultural technologies adoption − a multinomial endogenous switching regression application in rural Zimbabwe," Food Policy, Elsevier, vol. 125(C).
    13. Pannell, David J. & Llewellyn, Rick S. & Corbeels, Marc, 2013. "The farm-level economics of conservation agriculture for resource-poor farmers," Working Papers 166526, University of Western Australia, School of Agricultural and Resource Economics.
    14. Abadi, Bijan & Yadollahi, Arash & Bybordi, Ahmad & Rahmati, Mehdi, 2020. "The discrimination of adopters and non-adopters of conservation agricultural initiatives in northwest Iran: Attitudinal, soil testing, and topographical modules," Land Use Policy, Elsevier, vol. 95(C).
    15. Lalani, Baqir & Dorward, Peter & Holloway, Garth, 2017. "Farm-level Economic Analysis - Is Conservation Agriculture Helping the Poor?," Ecological Economics, Elsevier, vol. 141(C), pages 144-153.
    16. Luis A. De los Santos‐Montero & Boris E. Bravo‐Ureta, 2017. "Productivity effects and natural resource management: econometric evidence from POSAF‐II in Nicaragua," Natural Resources Forum, Blackwell Publishing, vol. 41(4), pages 220-233, November.
    17. Cechura, Lukas & Hockmann, Heinrich & Malý, Michal & Žáková Kroupová, Zdenka, 2015. "Comparison of technology and technical efficiency in cereal production among EU countries," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 7(2), pages 27-37.
    18. Oumer, Ali M. & Burton, Michael, 2018. "Drivers and Synergies in the Adoption of Sustainable Agricultural Intensification Practices: A Dynamic Perspective," 2018 Annual Meeting, August 5-7, Washington, D.C. 273871, Agricultural and Applied Economics Association.
    19. Ali M. Oumer & Amin Mugera & Michael Burton & Atakelty Hailu, 2022. "Technical efficiency and firm heterogeneity in stochastic frontier models: application to smallholder maize farms in Ethiopia," Journal of Productivity Analysis, Springer, vol. 57(2), pages 213-241, April.
    20. Ogunlesi, Ayodeji & Bokana, Koye & Okoye, Chidozie & Loy, Jens-Peter, 2018. "Agricultural Productivity and Food Supply Stability in Sub-Saharan Africa: LSDV and SYS-GMM Approach," MPRA Paper 90204, University Library of Munich, Germany.
    21. Abebayehu Girma Geffersa & Frank Wogbe Agbola & Amir Mahmood, 2022. "Modelling technical efficiency and technology gap in smallholder maize sector in Ethiopia: accounting for farm heterogeneity," Applied Economics, Taylor & Francis Journals, vol. 54(5), pages 506-521, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zarkovic, Maja, 2020. "Cap-and-trade and produce at least cost? Investigating firm behaviour in the EU ETS," Working papers 2020/12, Faculty of Business and Economics - University of Basel.
    2. Edward Ebo ONUMAH & Bernhard BRÜMMER & Gabriele HÖRSTGEN-SCHWARK, 2010. "Productivity of the hired and family labour and determinants of technical inefficiency in Ghana's fish farms," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 56(2), pages 79-88.
    3. Dairo Estrada & Poldy Osorio, 2004. "Effects of Financial Capital on Colombian Banking Efficiency," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, vol. 22(47), pages 162-201, December.
    4. Nguyen, Hoa-Thi-Minh & Do, Huong & Kompas, Tom, 2021. "Economic efficiency versus social equity: The productivity challenge for rice production in a ‘greying’ rural Vietnam," World Development, Elsevier, vol. 148(C).
    5. Phatima MAMARDASHVILI & Dierk SCHMID, 2013. "Performance of Swiss dairy farms under provision of public goods," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 59(7), pages 300-314.
    6. Hai-Dang Nguyen & Thanh Ngo & Tu DQ Le & Huong Ho & Hai T.H. Nguyen, 2019. "The Role of Knowledge in Sustainable Agriculture: Evidence from Rice Farms’ Technical Efficiency in Hanoi, Vietnam," Sustainability, MDPI, vol. 11(9), pages 1-10, April.
    7. Luis Murillo-Zamorano & Carmelo Petraglia, 2011. "Technical efficiency in primary health care: does quality matter?," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 12(2), pages 115-125, April.
    8. Suárez-Alemán, Ancor & Morales Sarriera, Javier & Serebrisky, Tomás & Trujillo, Lourdes, 2016. "When it comes to container port efficiency, are all developing regions equal?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 56-77.
    9. Gian Carlo Scarsi, 1999. "Local Electricity Distribution in Italy: Comparative Efficiency Analysis and Methodological Cross-Checking," Working Papers 1999.16, Fondazione Eni Enrico Mattei.
    10. Tim J. Coelli, 1995. "Recent Developments In Frontier Modelling And Efficiency Measurement," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 39(3), pages 219-245, December.
    11. Hang Xiong, 2012. "Effects of One-Sided Fiscal Decentralization on Environmental Efficiency of Chinese Provinces," Working Papers halshs-00672450, HAL.
    12. Guerrini, Andrea & Romano, Giulia & Leardini, Chiara, 2018. "Economies of scale and density in the Italian water industry: A stochastic frontier approach," Utilities Policy, Elsevier, vol. 52(C), pages 103-111.
    13. O'Donnell, C.J., 2014. "Technologies, Markets and Behaviour: Some Implications for Estimating Efficiency and Productivity Change," 2014 Conference (58th), February 4-7, 2014, Port Macquarie, Australia 165867, Australian Agricultural and Resource Economics Society.
    14. Hang Xiong, 2012. "Effects of One-Sided Fiscal Decentralization on Environmental Efficiency of Chinese Provinces," CERDI Working papers halshs-00672450, HAL.
    15. Varabyova, Yauheniya & Schreyögg, Jonas, 2013. "International comparisons of the technical efficiency of the hospital sector: Panel data analysis of OECD countries using parametric and non-parametric approaches," Health Policy, Elsevier, vol. 112(1), pages 70-79.
    16. Maria Francesca Cracolici & Peter Nijkamp & Piet Rietveld, 2008. "Assessment of Tourism Competitiveness by Analysing Destination Efficiency," Tourism Economics, , vol. 14(2), pages 325-342, June.
    17. Renato Villano & Euan Fleming, 2006. "Technical Inefficiency and Production Risk in Rice Farming: Evidence from Central Luzon Philippines," Asian Economic Journal, East Asian Economic Association, vol. 20(1), pages 29-46, March.
    18. Suárez-Alemán, Ancor & Morales Sarriera, Javier & Serebrisky, Tomás & Trujillo, Lourdes, 2016. "When it comes to container port efficiency, are all developing regions equal?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 56-77.
    19. Khem Sharma & Pingsun Leung & Halina Zaleski, 1997. "Productive Efficiency of the Swine Industry in Hawaii: Stochastic Frontier vs. Data Envelopment Analysis," Journal of Productivity Analysis, Springer, vol. 8(4), pages 447-459, November.
    20. Antti Saastamoinen, 2015. "Heteroscedasticity Or Production Risk? A Synthetic View," Journal of Economic Surveys, Wiley Blackwell, vol. 29(3), pages 459-478, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:124:y:2014:i:c:p:21-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.