IDEAS home Printed from https://ideas.repec.org/a/eco/journ2/2022-06-14.html
   My bibliography  Save this article

The Business Analysis of Electric Vehicle Charging Stations to Power Environmentally Friendly Tourism: A Case Study of the Khao Kho Route in Thailand

Author

Listed:
  • Dokrak Insan

    (School of Renewable Energy and Smart Grid Technology (SGtech), Naresuan University, Phitsanulok 65000, Thailand,)

  • Wattanapong Rakwichian

    (School of Renewable Energy and Smart Grid Technology (SGtech), Naresuan University, Phitsanulok 65000, Thailand,)

  • Parichart Rachapradit

    (Faculty of Business Economics and Communications (BEC), Naresuan University, Phitsanulok 65000, Thailand,)

  • Prapita Thanarak

    (School of Renewable Energy and Smart Grid Technology (SGtech), Naresuan University, Phitsanulok 65000, Thailand.)

Abstract

The growing demand for electric vehicle charging stations is due to the increasing number of electric vehicles due to the rapid development of electric vehicle production and people buying more. This has also increased the demand for electric vehicle charging stations to travel between cities. This is because most combustion cars nowadays use fossil fuels. It harms clean air, producing carbon dioxide (CO2), PM2.5, and greenhouse gas emissions, resulting in climate changes and natural environmental impacts. Directly affect people in terms of health, living, and present life. By emphasizing the participation of business and government sectors, Thailand has encouraged investment in producing and importing electric vehicles to replace fossil fuel combustion. They also promoted the development of electric cars to be more efficient and run longer distances. The cumulative number of electric vehicles from 2017 to the present is increasing, making business opportunities for EV charging stations available in Thailand. From business model analysis was designed in 3 scenarios, resulting in Scenario1 Normal charger 6 outlets, in which the cost is low, the cost recovery time is the most, and it has a low net profit margin installed in shopping malls, restaurants, and residential condominiums. Scenario2 Quick charger 6 outlets take less time to charge. A high charging and increased investment cost have a short payback period installed in front of convenience stores and the current gas station. Scenario3 is a combination of an electric vehicle charging station with a normal charger and quick charger total of 2 outlets, installed in large areas such as current gas stations, logistics centers, and department stores with souvenir shops and convenience stores. This information can help analyze costs and plan investment decisions on the ownership of electric vehicle charging stations. In addition, electric vehicle charging station scenarios can be compared to predict the net profit margin of the business model.

Suggested Citation

  • Dokrak Insan & Wattanapong Rakwichian & Parichart Rachapradit & Prapita Thanarak, 2022. "The Business Analysis of Electric Vehicle Charging Stations to Power Environmentally Friendly Tourism: A Case Study of the Khao Kho Route in Thailand," International Journal of Energy Economics and Policy, Econjournals, vol. 12(6), pages 102-111, November.
  • Handle: RePEc:eco:journ2:2022-06-14
    as

    Download full text from publisher

    File URL: https://www.econjournals.com/index.php/ijeep/article/download/13535/6995
    Download Restriction: no

    File URL: https://www.econjournals.com/index.php/ijeep/article/view/13535
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pongthanaisawan, Jakapong & Sorapipatana, Chumnong, 2013. "Greenhouse gas emissions from Thailand’s transport sector: Trends and mitigation options," Applied Energy, Elsevier, vol. 101(C), pages 288-298.
    2. Ratanavaraha, Vatanavongs & Jomnonkwao, Sajjakaj, 2015. "Trends in Thailand CO2 emissions in the transportation sector and Policy Mitigation," Transport Policy, Elsevier, vol. 41(C), pages 136-146.
    3. Deepak Ronanki & Apoorva Kelkar & Sheldon S. Williamson, 2019. "Extreme Fast Charging Technology—Prospects to Enhance Sustainable Electric Transportation," Energies, MDPI, vol. 12(19), pages 1-17, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tanattrin Bunnag, 2024. "Forecasting PM10 Caused by Bangkok’s Leading Greenhouse Gas Emission Using the SARIMA and SARIMA-GARCH Model," International Journal of Energy Economics and Policy, Econjournals, vol. 14(1), pages 418-426, January.
    2. Pannee Suanpang & Pitchaya Jamjuntr, 2024. "Optimal Electric Vehicle Battery Management Using Q-learning for Sustainability," Sustainability, MDPI, vol. 16(16), pages 1-50, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Jin-Hua & Guo, Jian-Feng & Peng, Binbin & Nie, Hongguang & Kemp, Rene, 2020. "Energy growth sources and future energy-saving potentials in passenger transportation sector in China," Energy, Elsevier, vol. 206(C).
    2. Huali Sun & Mengzhen Li & Yaofeng Xue, 2019. "Examining the Factors Influencing Transport Sector CO 2 Emissions and Their Efficiency in Central China," Sustainability, MDPI, vol. 11(17), pages 1-15, August.
    3. Shafqat Jawad & Junyong Liu, 2020. "Electrical Vehicle Charging Services Planning and Operation with Interdependent Power Networks and Transportation Networks: A Review of the Current Scenario and Future Trends," Energies, MDPI, vol. 13(13), pages 1-24, July.
    4. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    5. Rejaul Islam & S M Sajjad Hossain Rafin & Osama A. Mohammed, 2022. "Comprehensive Review of Power Electronic Converters in Electric Vehicle Applications," Forecasting, MDPI, vol. 5(1), pages 1-59, December.
    6. Rafał Kopacz & Michał Harasimczuk & Bartosz Lasek & Rafał Miśkiewicz & Jacek Rąbkowski, 2021. "All-SiC ANPC Submodule for an Advanced 1.5 kV EV Charging System under Various Modulation Methods," Energies, MDPI, vol. 14(17), pages 1-16, September.
    7. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    8. Solaymani, Saeed, 2019. "CO2 emissions patterns in 7 top carbon emitter economies: The case of transport sector," Energy, Elsevier, vol. 168(C), pages 989-1001.
    9. Schmitz Gonçalves, Daniel Neves & Goes, George Vasconcelos & de Almeida D'Agosto, Márcio & Albergaria de Mello Bandeira, Renata, 2019. "Energy use and emissions scenarios for transport to gauge progress toward national commitments," Energy Policy, Elsevier, vol. 135(C).
    10. AlSabbagh, Maha & Siu, Yim Ling & Guehnemann, Astrid & Barrett, John, 2017. "Integrated approach to the assessment of CO2e-mitigation measures for the road passenger transport sector in Bahrain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 203-215.
    11. Concettina Marino & Cosimo Monterosso & Antonino Nucara & Maria Francesca Panzera & Matilde Pietrafesa, 2020. "Analysis of the Reduction of Pollutant Emissions by the Vehicle Fleet of the City of Reggio Calabria Due to the Introduction of Ecological Vehicles," Sustainability, MDPI, vol. 12(7), pages 1-16, April.
    12. Rahman, Syed & Khan, Irfan Ahmed & Khan, Ashraf Ali & Mallik, Ayan & Nadeem, Muhammad Faisal, 2022. "Comprehensive review & impact analysis of integrating projected electric vehicle charging load to the existing low voltage distribution system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    13. Xiaoshu Cao & Shishu OuYang & Dan Liu & Wenyue Yang, 2019. "Spatiotemporal Patterns and Decomposition Analysis of CO 2 Emissions from Transportation in the Pearl River Delta," Energies, MDPI, vol. 12(11), pages 1-17, June.
    14. Restu Arisanti & Suci Purnamawati & Agus Muslim, 2024. "Determinants of Greenhouse Gas Emissions in the Transportation Sector in Indonesia: Official Statistics and Big Data Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 14(1), pages 86-97, January.
    15. Fei Ma & Wenlin Wang & Qipeng Sun & Fei Liu & Xiaodan Li, 2018. "Ecological Pressure of Carbon Footprint in Passenger Transport: Spatio-Temporal Changes and Regional Disparities," Sustainability, MDPI, vol. 10(2), pages 1-17, January.
    16. Seyedamin Valedsaravi & Abdelali El Aroudi & Luis Martínez-Salamero, 2022. "Review of Solid-State Transformer Applications on Electric Vehicle DC Ultra-Fast Charging Station," Energies, MDPI, vol. 15(15), pages 1-35, August.
    17. Chintala, V. & Subramanian, K.A., 2015. "An effort to enhance hydrogen energy share in a compression ignition engine under dual-fuel mode using low temperature combustion strategies," Applied Energy, Elsevier, vol. 146(C), pages 174-183.
    18. Chaisri Tarasawatpipat & Thammarak Srimarut & Witthaya Mekhum, 2020. "Seeing Domestic and Industrial Logistic in Context of CO2 Emission: Role of Container Port Traffic, Railway Transport, and Air Transport Intensity in Thailand," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 570-576.
    19. Chang, Ching-Chih & Chung, Chia-Ling, 2018. "Greenhouse gas mitigation policies in Taiwan's road transportation sectors," Energy Policy, Elsevier, vol. 123(C), pages 299-307.
    20. Sajjakaj Jomnonkwao & Savalee Uttra & Vatanavongs Ratanavaraha, 2020. "Forecasting Road Traffic Deaths in Thailand: Applications of Time-Series, Curve Estimation, Multiple Linear Regression, and Path Analysis Models," Sustainability, MDPI, vol. 12(1), pages 1-17, January.

    More about this item

    Keywords

    Electric Vehicle; Charging station; Energy Operation model; Business model; Transport sector;
    All these keywords.

    JEL classification:

    • G0 - Financial Economics - - General
    • M2 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Economics
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ2:2022-06-14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.