IDEAS home Printed from https://ideas.repec.org/a/eco/journ2/2024-01-12.html
   My bibliography  Save this article

Determinants of Greenhouse Gas Emissions in the Transportation Sector in Indonesia: Official Statistics and Big Data Approach

Author

Listed:
  • Restu Arisanti

    (Department of Statistics, Padjadjaran University, Indonesia)

  • Suci Purnamawati

    (Statistics of Nusa Tenggara Barat Province, Indonesia)

  • Agus Muslim

    (Statistics of Kepulaun Riau Province, Indonesia)

Abstract

The Covid-19 pandemic has affected every aspect, including the greenhouse gas emissions from the transportation industry. The adoption of Lockdown during the Covid-19 outbreak has decreased greenhouse gas emissions in the transportation sector. Studying the variables that affect the transportation sector's greenhouse gas emissions during the COVID-19 pandemic is particularly fascinating. Big data and official statistics were combined to create the data for this study. Official statistics are sourced from Statistics Indonesia (BPS) and the National Development Planning Agency (BAPPPENAS) while big data is sourced from the google mobility index. Based on the results of the generalized linear model with the gamma link, it can be concluded that the growth of GRDP per capita and the mobility of people to workplaces have a negative effect on greenhouse gas emissions in the transportation sector, mobility of the population to groceries and pharmacies has a positive effect on greenhouse gas emissions in the transportation sector, while people's mobility to recreation and retail has no effect on greenhouse gas emissions in the transportation sector. During the Covid-19 pandemic, population mobility to Workplaces which showed reduced work from an office (WFO) and increased work from home (WFH) had the greatest influence on reducing greenhouse gas emissions in the transportation sector. Work from home (WFH) can be used as a solution to reduce greenhouse gas emissions in the transportation sector at the beginning of the Covid-19 endemic.

Suggested Citation

  • Restu Arisanti & Suci Purnamawati & Agus Muslim, 2024. "Determinants of Greenhouse Gas Emissions in the Transportation Sector in Indonesia: Official Statistics and Big Data Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 14(1), pages 86-97, January.
  • Handle: RePEc:eco:journ2:2024-01-12
    as

    Download full text from publisher

    File URL: https://www.econjournals.com/index.php/ijeep/article/download/15035/7652
    Download Restriction: no

    File URL: https://www.econjournals.com/index.php/ijeep/article/view/15035
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dandan Liu & Dewei Yang & Anmin Huang, 2021. "LEAP-Based Greenhouse Gases Emissions Peak and Low Carbon Pathways in China’s Tourist Industry," IJERPH, MDPI, vol. 18(3), pages 1-15, January.
    2. Achour, Houda & Belloumi, Mounir, 2016. "Decomposing the influencing factors of energy consumption in Tunisian transportation sector using the LMDI method," Transport Policy, Elsevier, vol. 52(C), pages 64-71.
    3. Andrew Chapman & Takeshi Tsuji, 2020. "Impacts of COVID-19 on a Transitioning Energy System, Society, and International Cooperation," Sustainability, MDPI, vol. 12(19), pages 1-16, October.
    4. Serhiy Lyeonov & Tetyana Pimonenko & Yuriy Bilan & Dalia Štreimikienė & Grzegorz Mentel, 2019. "Assessment of Green Investments’ Impact on Sustainable Development: Linking Gross Domestic Product Per Capita, Greenhouse Gas Emissions and Renewable Energy," Energies, MDPI, vol. 12(20), pages 1-12, October.
    5. Ratanavaraha, Vatanavongs & Jomnonkwao, Sajjakaj, 2015. "Trends in Thailand CO2 emissions in the transportation sector and Policy Mitigation," Transport Policy, Elsevier, vol. 41(C), pages 136-146.
    6. Siavash Khalili & Eetu Rantanen & Dmitrii Bogdanov & Christian Breyer, 2019. "Global Transportation Demand Development with Impacts on the Energy Demand and Greenhouse Gas Emissions in a Climate-Constrained World," Energies, MDPI, vol. 12(20), pages 1-54, October.
    7. Wang, W.W. & Zhang, M. & Zhou, M., 2011. "Using LMDI method to analyze transport sector CO2 emissions in China," Energy, Elsevier, vol. 36(10), pages 5909-5915.
    8. Mihaela Sterpu & Georgeta Soava & Anca Mehedintu, 2018. "Impact of Economic Growth and Energy Consumption on Greenhouse Gas Emissions: Testing Environmental Curves Hypotheses on EU Countries," Sustainability, MDPI, vol. 10(9), pages 1-14, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hualong Yang & Xuefei Ma, 2019. "Uncovering CO 2 Emissions Patterns from China-Oriented International Maritime Transport: Decomposition and Decoupling Analysis," Sustainability, MDPI, vol. 11(10), pages 1-19, May.
    2. Isik, Mine & Sarica, Kemal & Ari, Izzet, 2020. "Driving forces of Turkey's transportation sector CO2 emissions: An LMDI approach," Transport Policy, Elsevier, vol. 97(C), pages 210-219.
    3. Robaina, Margarita & Neves, Ana, 2021. "Complete decomposition analysis of CO2 emissions intensity in the transport sector in Europe," Research in Transportation Economics, Elsevier, vol. 90(C).
    4. Liu, Ningyin & Zhang, Yan & Fath, Brian D., 2021. "The material metabolism characteristics and growth patterns of the central cities of China's Beijing-Tianjin-Hebei region," Ecological Modelling, Elsevier, vol. 448(C).
    5. Chien, Fengsheng & Hsu, Ching-Chi & Ozturk, Ilhan & Sharif, Arshian & Sadiq, Muhammad, 2022. "The role of renewable energy and urbanization towards greenhouse gas emission in top Asian countries: Evidence from advance panel estimations," Renewable Energy, Elsevier, vol. 186(C), pages 207-216.
    6. Hadi Sasana & Panji Kusuma Prasetyanto & Diah Lufti Wijayanti & Ari Nurul Fatimah, 2023. "The Impact of Electricity Energy Production, Fossil Energy Consumption, Renewable Energy Consumption, Deforestation, and Agriculture towards Climate Change in Middle-Income Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 13(5), pages 442-449, September.
    7. Xu, Jin-Hua & Guo, Jian-Feng & Peng, Binbin & Nie, Hongguang & Kemp, Rene, 2020. "Energy growth sources and future energy-saving potentials in passenger transportation sector in China," Energy, Elsevier, vol. 206(C).
    8. Jiefang Dong & Chun Deng & Rongrong Li & Jieyu Huang, 2016. "Moving Low-Carbon Transportation in Xinjiang: Evidence from STIRPAT and Rigid Regression Models," Sustainability, MDPI, vol. 9(1), pages 1-15, December.
    9. Tianxiang Lv & Xu Wu, 2019. "Using Panel Data to Evaluate the Factors Affecting Transport Energy Consumption in China’s Three Regions," IJERPH, MDPI, vol. 16(4), pages 1-14, February.
    10. Shi, Changfeng & Zhao, Yi & Zhang, Chenjun & Pang, Qinghua & Chen, Qiyong & Li, Ang, 2022. "Research on the driving effect of production electricity consumption changes in the Yangtze River Economic Zone - Based on regional and industrial perspectives," Energy, Elsevier, vol. 238(PA).
    11. Ming Meng & Manyu Li, 2020. "Decomposition Analysis and Trend Prediction of CO 2 Emissions in China’s Transportation Industry," Sustainability, MDPI, vol. 12(7), pages 1-20, March.
    12. Tomasz Rokicki & Aleksandra Perkowska, 2020. "Changes in Energy Supplies in the Countries of the Visegrad Group," Sustainability, MDPI, vol. 12(19), pages 1-17, September.
    13. Hualong Yang & Xuefei Ma & Yuwei Xing, 2017. "Trends in CO 2 Emissions from China-Oriented International Marine Transportation Activities and Policy Implications," Energies, MDPI, vol. 10(7), pages 1-17, July.
    14. Wai-Ming To & Peter K. C. Lee & Antonio K. W. Lau, 2021. "Economic and Environmental Changes in Shenzhen—A Technology Hub in Southern China," Sustainability, MDPI, vol. 13(10), pages 1-17, May.
    15. Oyewo, Ayobami Solomon & Solomon, A.A. & Bogdanov, Dmitrii & Aghahosseini, Arman & Mensah, Theophilus Nii Odai & Ram, Manish & Breyer, Christian, 2021. "Just transition towards defossilised energy systems for developing economies: A case study of Ethiopia," Renewable Energy, Elsevier, vol. 176(C), pages 346-365.
    16. Jiwon Yu & Young Jae Han & Hyewon Yang & Sugil Lee & Gildong Kim & Chulung Lee, 2022. "Promising Technology Analysis and Patent Roadmap Development in the Hydrogen Supply Chain," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
    17. Trotta, Gianluca, 2020. "Assessing energy efficiency improvements and related energy security and climate benefits in Finland: An ex post multi-sectoral decomposition analysis," Energy Economics, Elsevier, vol. 86(C).
    18. Nicoleta Mihaela Florea & Roxana Maria Bădîrcea & Ramona Costina Pîrvu & Alina Georgiana Manta & Marius Dalian Doran & Elena Jianu, 2020. "The impact of agriculture and renewable energy on climate change in Central and East European Countries," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 66(10), pages 444-457.
    19. Daniel Rasbash & Kevin Joseph Dillman & Jukka Heinonen & Eyjólfur Ingi Ásgeirsson, 2023. "A National and Regional Greenhouse Gas Breakeven Assessment of EVs across North America," Sustainability, MDPI, vol. 15(3), pages 1-26, January.
    20. Aleksandra Kuzior & Aleksy Kwilinski & Ihor Hroznyi, 2021. "The Factorial-Reflexive Approach to Diagnosing the Executors’ and Contractors’ Attitude to Achieving the Objectives by Energy Supplying Companies," Energies, MDPI, vol. 14(9), pages 1-16, April.

    More about this item

    Keywords

    Transportation Sector Greenhouse Gas Emissions; Work from Home; Google Mobility Index;
    All these keywords.

    JEL classification:

    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • O18 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Urban, Rural, Regional, and Transportation Analysis; Housing; Infrastructure
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ2:2024-01-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.