An Analysis of the Possible Financial Savings of a Carbon Capture Process through Carbon Dioxide Absorption and Geological Dumping
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Olajire, Abass A., 2010. "CO2 capture and separation technologies for end-of-pipe applications – A review," Energy, Elsevier, vol. 35(6), pages 2610-2628.
- David A. Green & Brian S. Turk & Raghubir P. Gupta & Jeffery W. Portzer & William J. McMichael & Douglas P. Harrison, 2004. "Capture of carbon dioxide from flue gas using solid regenerable sorbents," International Journal of Environmental Technology and Management, Inderscience Enterprises Ltd, vol. 4(1/2), pages 53-67.
- Zhang, Rui & Zhang, Xiaowen & Yang, Qi & Yu, Hai & Liang, Zhiwu & Luo, Xiao, 2017. "Analysis of the reduction of energy cost by using MEA-MDEA-PZ solvent for post-combustion carbon dioxide capture (PCC)," Applied Energy, Elsevier, vol. 205(C), pages 1002-1011.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shunji Kang & Zhi Shen & Xizhou Shen & Liuya Fang & Li Xiang & Wenze Yang, 2021. "Experimental investigation on CO2 desorption kinetics from MDEA + PZ and comparison with MDEA/MDEA + DEA aqueous solutions with thermo‐gravimetric analysis method," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(5), pages 974-987, October.
- Zhang, Xiaowen & Zhang, Rui & Liu, Helei & Gao, Hongxia & Liang, Zhiwu, 2018. "Evaluating CO2 desorption performance in CO2-loaded aqueous tri-solvent blend amines with and without solid acid catalysts," Applied Energy, Elsevier, vol. 218(C), pages 417-429.
- Narukulla, Ramesh & Chaturvedi, Krishna Raghav & Ojha, Umaprasana & Sharma, Tushar, 2022. "Carbon dioxide capturing evaluation of polyacryloyl hydrazide solutions via rheological analysis for carbon utilization applications," Energy, Elsevier, vol. 241(C).
- Dindi, Abdallah & Quang, Dang Viet & Abu-Zahra, Mohammad R.M., 2015. "Simultaneous carbon dioxide capture and utilization using thermal desalination reject brine," Applied Energy, Elsevier, vol. 154(C), pages 298-308.
- Vega, F. & Baena-Moreno, F.M. & Gallego Fernández, Luz M. & Portillo, E. & Navarrete, B. & Zhang, Zhien, 2020. "Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale," Applied Energy, Elsevier, vol. 260(C).
- Budzianowski, Wojciech Marcin, 2011. "Can ‘negative net CO2 emissions’ from decarbonised biogas-to-electricity contribute to solving Poland’s carbon capture and sequestration dilemmas?," Energy, Elsevier, vol. 36(11), pages 6318-6325.
- Chen, Zhaoyang & Fang, Jie & Xu, Chungang & Xia, Zhiming & Yan, Kefeng & Li, Xiaosen, 2020. "Carbon dioxide hydrate separation from Integrated Gasification Combined Cycle (IGCC) syngas by a novel hydrate heat-mass coupling method," Energy, Elsevier, vol. 199(C).
- Wang, Rujie & Zhao, Huajun & Qi, Cairao & Yang, Xiaotong & Zhang, Shihan & Li, Ming & Wang, Lidong, 2022. "Novel tertiary amine-based biphasic solvent for energy-efficient CO2 capture with low corrosivity," Energy, Elsevier, vol. 260(C).
- Nasvi, M.C.M. & Ranjith, P.G. & Sanjayan, J. & Haque, A., 2013. "Sub- and super-critical carbon dioxide permeability of wellbore materials under geological sequestration conditions: An experimental study," Energy, Elsevier, vol. 54(C), pages 231-239.
- Adnan, Muflih A. & Hossain, Mohammad M. & Kibria, Md Golam, 2020. "Biomass upgrading to high-value chemicals via gasification and electrolysis: A thermodynamic analysis," Renewable Energy, Elsevier, vol. 162(C), pages 1367-1379.
- Hwang, Kyung-Ran & Park, Jin-Woo & Lee, Sung-Wook & Hong, Sungkook & Lee, Chun-Boo & Oh, Duck-Kyu & Jin, Min-Ho & Lee, Dong-Wook & Park, Jong-Soo, 2015. "Catalytic combustion of the retentate gas from a CO2/H2 separation membrane reactor for further CO2 enrichment and energy recovery," Energy, Elsevier, vol. 90(P1), pages 1192-1198.
- Chen, Wei-Hsin & Hou, Yu-Lin & Hung, Chen-I, 2011. "A theoretical analysis of the capture of greenhouse gases by single water droplet at atmospheric and elevated pressures," Applied Energy, Elsevier, vol. 88(12), pages 5120-5130.
- Amani Alnahdi & Ali Elkamel & Munawar A. Shaik & Saad A. Al-Sobhi & Fatih S. Erenay, 2019. "Optimal Production Planning and Pollution Control in Petroleum Refineries Using Mathematical Programming and Dispersion Models," Sustainability, MDPI, vol. 11(14), pages 1-31, July.
- Gao, Hongxia & Huang, Yufei & Zhang, Xiaowen & Bairq, Zain Ali Saleh & Huang, Yangqiang & Tontiwachwuthikul, Paitoon & Liang, Zhiwu, 2020. "Catalytic performance and mechanism of SO42−/ZrO2/SBA-15 catalyst for CO2 desorption in CO2-loaded monoethanolamine solution," Applied Energy, Elsevier, vol. 259(C).
- Seles, Bruno Michel Roman Pais & Lopes de Sousa Jabbour, Ana Beatriz & Jabbour, Charbel Jose Chiappetta & Latan, Hengky & Roubaud, David, 2019. "Do Environmental Practices Improve Business Performance Even in an Economic Crisis? Extending the Win-Win Perspective," Ecological Economics, Elsevier, vol. 163(C), pages 189-204.
- Ben Mansour, R. & Nemitallah, M.A. & Habib, M.A., 2013. "Numerical investigation of oxygen permeation and methane oxy-combustion in a stagnation flow ion transport membrane reactor," Energy, Elsevier, vol. 54(C), pages 322-332.
- Chen, Wei-Hsin & Chen, Chia-Yang, 2020. "Water gas shift reaction for hydrogen production and carbon dioxide capture: A review," Applied Energy, Elsevier, vol. 258(C).
- Bigham, Sajjad & Yu, Dazhi & Chugh, Devesh & Moghaddam, Saeed, 2014. "Moving beyond the limits of mass transport in liquid absorbent microfilms through the implementation of surface-induced vortices," Energy, Elsevier, vol. 65(C), pages 621-630.
- Costa, Isabella & Rochedo, Pedro & Costa, Daniele & Ferreira, Paula & Araújo, Madalena & Schaeffer, Roberto & Szklo, Alexandre, 2019. "Placing hubs in CO2 pipelines: An application to industrial CO2 emissions in the Iberian Peninsula," Applied Energy, Elsevier, vol. 236(C), pages 22-31.
- Rashidi, Nor Adilla & Yusup, Suzana & Hameed, Bassim H., 2013. "Kinetic studies on carbon dioxide capture using lignocellulosic based activated carbon," Energy, Elsevier, vol. 61(C), pages 440-446.
More about this item
Keywords
Cost of Carbon Dioxide; Geological Dumping; Financial Saving;All these keywords.
JEL classification:
- Q - Agricultural and Natural Resource Economics; Environmental and Ecological Economics
- Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics
- Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ2:2020-04-33. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.