Experimental investigation on CO2 desorption kinetics from MDEA + PZ and comparison with MDEA/MDEA + DEA aqueous solutions with thermo‐gravimetric analysis method
Author
Abstract
Suggested Citation
DOI: 10.1002/ghg.2107
Download full text from publisher
References listed on IDEAS
- Jayaraman, Kandasamy & Kök, Mustafa Versan & Gökalp, Iskender, 2020. "Combustion mechanism and model free kinetics of different origin coal samples: Thermal analysis approach," Energy, Elsevier, vol. 204(C).
- Foster Kofi Ayittey & Christine Ann Obek & Agus Saptoro & Kumar Perumal & Mee Kee Wong, 2020. "Process modifications for a hot potassium carbonate‐based CO2 capture system: a comparative study," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(1), pages 130-146, February.
- Zhang, Rui & Zhang, Xiaowen & Yang, Qi & Yu, Hai & Liang, Zhiwu & Luo, Xiao, 2017. "Analysis of the reduction of energy cost by using MEA-MDEA-PZ solvent for post-combustion carbon dioxide capture (PCC)," Applied Energy, Elsevier, vol. 205(C), pages 1002-1011.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chuenphan, Thapanat & Yurata, Tarabordin & Sema, Teerawat & Chalermsinsuwan, Benjapon, 2022. "Techno-economic sensitivity analysis for optimization of carbon dioxide capture process by potassium carbonate solution," Energy, Elsevier, vol. 254(PA).
- Zhang, Xiaowen & Zhang, Rui & Liu, Helei & Gao, Hongxia & Liang, Zhiwu, 2018. "Evaluating CO2 desorption performance in CO2-loaded aqueous tri-solvent blend amines with and without solid acid catalysts," Applied Energy, Elsevier, vol. 218(C), pages 417-429.
- Wang, Rujie & Zhao, Huajun & Qi, Cairao & Yang, Xiaotong & Zhang, Shihan & Li, Ming & Wang, Lidong, 2022. "Novel tertiary amine-based biphasic solvent for energy-efficient CO2 capture with low corrosivity," Energy, Elsevier, vol. 260(C).
- Ni, Guanhua & Dou, Haoran & Li, Zhao & Zhu, Chuanjie & Sun, Gongshuai & Hu, Xiangming & Wang, Gang & Liu, Yixin & Wang, Zhenyang, 2022. "Study on the combustion characteristics of bituminous coal modified by typical inorganic acids," Energy, Elsevier, vol. 261(PA).
- Foster Kofi Ayittey & Agus Saptoro & Perumal Kumar & Mee Kee Wong, 2020. "Parametric study and optimisation of hot K2CO3‐based post‐combustion CO2 capture from a coal‐fired power plant," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(3), pages 631-642, June.
- Zhao, Jingyu & Hang, Gai & Song, Jiajia & Lu, Shiping & Ming, Hanqi & Chang, Jiaming & Deng, Jun & Zhang, Yanni & Shu, Chi-Min, 2023. "Spontaneous oxidation kinetics of weathered coal based upon thermogravimetric characteristics," Energy, Elsevier, vol. 275(C).
- Gao, Hongxia & Huang, Yufei & Zhang, Xiaowen & Bairq, Zain Ali Saleh & Huang, Yangqiang & Tontiwachwuthikul, Paitoon & Liang, Zhiwu, 2020. "Catalytic performance and mechanism of SO42−/ZrO2/SBA-15 catalyst for CO2 desorption in CO2-loaded monoethanolamine solution," Applied Energy, Elsevier, vol. 259(C).
- Liu, Yang & Fu, Peifang & Yu, Bo & Yan, Weijie & Chen, Yumin & Zhou, Huaichun, 2023. "Intrinsic combustion kinetics of rapid-pyrolysis Zhundong coal char," Energy, Elsevier, vol. 262(PB).
- Aprianti, Nabila & Faizal, Muhammad & Said, Muhammad & Nasir, Subriyer & Fudholi, Ahmad, 2023. "Gasification kinetic and thermodynamic parameters of fine coal using thermogravimetric analysis," Energy, Elsevier, vol. 268(C).
- Pereira, Luís M.C. & Vega, Lourdes F., 2018. "A systematic approach for the thermodynamic modelling of CO2-amine absorption process using molecular-based models," Applied Energy, Elsevier, vol. 232(C), pages 273-291.
- Li, Hongwei & Tang, Zhigang & Li, Na & Cui, Longpeng & Mao, Xian-zhong, 2020. "Mechanism and process study on steel slag enhancement for CO2 capture by seawater," Applied Energy, Elsevier, vol. 276(C).
- Zhang, Zhien & Borhani, Tohid N. & Olabi, Abdul G., 2020. "Status and perspective of CO2 absorption process," Energy, Elsevier, vol. 205(C).
- Hu, Fan & Xiong, Biao & Liu, Xuhui & Huang, Xiaohong & Li, Yu & Liu, Zhaohui, 2023. "Optimized TGA-based experimental method for studying intrinsic kinetics of coal char oxidation under moderate or intense low-oxygen dilution oxy-fuel conditions," Energy, Elsevier, vol. 265(C).
- Zhang, Xiaowen & Liu, Helei & Liang, Zhiwu & Idem, Raphael & Tontiwachwuthikul, Paitoon & Jaber Al-Marri, Mohammed & Benamor, Abdelbaki, 2018. "Reducing energy consumption of CO2 desorption in CO2-loaded aqueous amine solution using Al2O3/HZSM-5 bifunctional catalysts," Applied Energy, Elsevier, vol. 229(C), pages 562-576.
- Hosseini-Ardali, Seyed Mohsen & Hazrati-Kalbibaki, Majid & Fattahi, Moslem & Lezsovits, Ferenc, 2020. "Multi-objective optimization of post combustion CO2 capture using methyldiethanolamine (MDEA) and piperazine (PZ) bi-solvent," Energy, Elsevier, vol. 211(C).
- He, Xinwei & He, Hang & Barzagli, Francesco & Amer, Mohammad Waleed & Li, Chao'en & Zhang, Rui, 2023. "Analysis of the energy consumption in solvent regeneration processes using binary amine blends for CO2 capture," Energy, Elsevier, vol. 270(C).
- Otitoju, Olajide & Oko, Eni & Wang, Meihong, 2021. "Technical and economic performance assessment of post-combustion carbon capture using piperazine for large scale natural gas combined cycle power plants through process simulation," Applied Energy, Elsevier, vol. 292(C).
- Kazemi, Abolghasem & Moreno, Jovita & Iribarren, Diego, 2023. "Economic optimization and comparative environmental assessment of natural gas combined cycle power plants with CO2 capture," Energy, Elsevier, vol. 277(C).
- Zhang, Rui & Yang, Qi & Yu, Bing & Yu, Hai & Liang, Zhiwu, 2018. "Toward to efficient CO2 capture solvent design by analyzing the effect of substituent type connected to N-atom," Energy, Elsevier, vol. 144(C), pages 1064-1072.
- Zhao, Jun & Fu, Jianxin & Deng, Shuai & Wang, Junyao & Xu, Yaofeng, 2020. "Decoupled thermal-driven absorption-based CO2 capture into heat engine plus carbon pump: A new understanding with the case study," Energy, Elsevier, vol. 210(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:11:y:2021:i:5:p:974-987. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.