IDEAS home Printed from https://ideas.repec.org/a/eco/journ2/2017-06-8.html
   My bibliography  Save this article

Examining Energy Futures Market Efficiency Under Multiple Regime Shifts

Author

Listed:
  • Onder Buberkoku

    (Department of Finance, Faculty of Business Administration, Yuzuncu Yil University, Van, Turkey)

Abstract

This study examines the West Texas Intermediate crude oil (WTI), Europe Brent crude oil (Brent), heating oil no. 2, and Henry Hub natural gas futures markets efficiency following Fama s (1970) weak-form efficiency hypothesis, using spot and futures prices at 1, 2, 3, and 4 months maturity based on the tests with unknown multiple regime shifts. The results show that it is important to consider the multiple regime shifts when determining whether energy futures markets are efficient. We find that WTI and Brent futures markets are not efficient, whereas natural gas and heating oil futures markets are efficient. Additionally, the findings also shed light on discussions about the stationary properties of energy commodities and whether spot and futures prices are cointegrated. In particular, this study presents new evidence based on the unit root and cointegration tests with multiple structural breaks.

Suggested Citation

  • Onder Buberkoku, 2017. "Examining Energy Futures Market Efficiency Under Multiple Regime Shifts," International Journal of Energy Economics and Policy, Econjournals, vol. 7(6), pages 61-71.
  • Handle: RePEc:eco:journ2:2017-06-8
    as

    Download full text from publisher

    File URL: https://www.econjournals.com/index.php/ijeep/article/download/5578/3413
    Download Restriction: no

    File URL: https://www.econjournals.com/index.php/ijeep/article/view/5578/3413
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carrion-i-Silvestre, Josep Lluís & Kim, Dukpa & Perron, Pierre, 2009. "Gls-Based Unit Root Tests With Multiple Structural Breaks Under Both The Null And The Alternative Hypotheses," Econometric Theory, Cambridge University Press, vol. 25(6), pages 1754-1792, December.
    2. Fan, Ying & Xu, Jin-Hua, 2011. "What has driven oil prices since 2000? A structural change perspective," Energy Economics, Elsevier, vol. 33(6), pages 1082-1094.
    3. Arouri, Mohamed El Hedi & Hammoudeh, Shawkat & Lahiani, Amine & Nguyen, Duc Khuong, 2013. "On the short- and long-run efficiency of energy and precious metal markets," Energy Economics, Elsevier, vol. 40(C), pages 832-844.
    4. Moosa, Imad A. & Al-Loughani, Nabeel E., 1994. "Unbiasedness and time varying risk premia in the crude oil futures market," Energy Economics, Elsevier, vol. 16(2), pages 99-105, April.
    5. Narayan, Paresh Kumar & Narayan, Seema & Zheng, Xinwei, 2010. "Gold and oil futures markets: Are markets efficient?," Applied Energy, Elsevier, vol. 87(10), pages 3299-3303, October.
    6. Hooi Hooi Lean & Michael McAleer & Wing-Keung Wong, 2010. "Market Efficiency of Oil Spot and Futures: A Stochastic Dominance Approach," CIRJE F-Series CIRJE-F-705, CIRJE, Faculty of Economics, University of Tokyo.
    7. Narayan, Paresh Kumar & Narayan, Seema, 2010. "Modelling the impact of oil prices on Vietnam's stock prices," Applied Energy, Elsevier, vol. 87(1), pages 356-361, January.
    8. Zivot, Eric & Andrews, Donald W K, 2002. "Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 25-44, January.
    9. William J. Crowder & Anas Hamed, 1993. "A cointegration test for oil futures market efficiency," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 13(8), pages 933-941, December.
    10. Andrew McKenzie & Matthew Holt, 2002. "Market efficiency in agricultural futures markets," Applied Economics, Taylor & Francis Journals, vol. 34(12), pages 1519-1532.
    11. H. Holly Wang & Bingfan Ke, 2005. "Efficiency tests of agricultural commodity futures markets in China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 49(2), pages 125-141, June.
    12. Maki, Daiki, 2012. "Tests for cointegration allowing for an unknown number of breaks," Economic Modelling, Elsevier, vol. 29(5), pages 2011-2015.
    13. Lean, Hooi Hooi & McAleer, Michael & Wong, Wing-Keung, 2010. "Market efficiency of oil spot and futures: A mean-variance and stochastic dominance approach," Energy Economics, Elsevier, vol. 32(5), pages 979-986, September.
    14. Lean, H.H. & McAleer, M.J. & Wong, W.-K., 2010. "Investor preferences for oil spot and futures based on mean-variance and stochastic dominance," Econometric Institute Research Papers EI 2010-37, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    15. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    16. Perron, Pierre, 1989. "The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 57(6), pages 1361-1401, November.
    17. Garbade, Kenneth D & Silber, William L, 1983. "Price Movements and Price Discovery in Futures and Cash Markets," The Review of Economics and Statistics, MIT Press, vol. 65(2), pages 289-297, May.
    18. Abdulnasser Hatemi-J, 2008. "Tests for cointegration with two unknown regime shifts with an application to financial market integration," Empirical Economics, Springer, vol. 35(3), pages 497-505, November.
    19. Narayan, Paresh Kumar & Liu, Ruipeng, 2011. "Are shocks to commodity prices persistent?," Applied Energy, Elsevier, vol. 88(1), pages 409-416, January.
    20. Shambora, William E. & Rossiter, Rosemary, 2007. "Are there exploitable inefficiencies in the futures market for oil?," Energy Economics, Elsevier, vol. 29(1), pages 18-27, January.
    21. Gregory, Allan W & Hansen, Bruce E, 1996. "Tests for Cointegration in Models with Regime and Trend Shifts," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 58(3), pages 555-560, August.
    22. Abosedra, Salah & Baghestani, Hamid, 2004. "On the predictive accuracy of crude oil futures prices," Energy Policy, Elsevier, vol. 32(12), pages 1389-1393, August.
    23. Tang, Bao-jun & Shen, Cheng & Gao, Chao, 2013. "The efficiency analysis of the European CO2 futures market," Applied Energy, Elsevier, vol. 112(C), pages 1544-1547.
    24. Lee, Chien-Chiang & Zeng, Jhih-Hong, 2011. "Revisiting the relationship between spot and futures oil prices: Evidence from quantile cointegrating regression," Energy Economics, Elsevier, vol. 33(5), pages 924-935, September.
    25. Chen, Pei-Fen & Lee, Chien-Chiang & Zeng, Jhih-Hong, 2014. "The relationship between spot and futures oil prices: Do structural breaks matter?," Energy Economics, Elsevier, vol. 43(C), pages 206-217.
    26. Emilio Peroni & Robert McNown, 1998. "Noninformative and informative tests of efficiency in three energy futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 18(8), pages 939-964, December.
    27. Gregory, Allan W. & Hansen, Bruce E., 1996. "Residual-based tests for cointegration in models with regime shifts," Journal of Econometrics, Elsevier, vol. 70(1), pages 99-126, January.
    28. Lorne N. Switzer & Mario El‐Khoury, 2007. "Extreme volatility, speculative efficiency, and the hedging effectiveness of the oil futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 27(1), pages 61-84, January.
    29. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    30. Sadorsky, Perry, 2006. "Modeling and forecasting petroleum futures volatility," Energy Economics, Elsevier, vol. 28(4), pages 467-488, July.
    31. Wang, Yudong & Wu, Chongfeng, 2013. "Are crude oil spot and futures prices cointegrated? Not always!," Economic Modelling, Elsevier, vol. 33(C), pages 641-650.
    32. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    33. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    34. Askari, Hossein & Krichene, Noureddine, 2008. "Oil price dynamics (2002-2006)," Energy Economics, Elsevier, vol. 30(5), pages 2134-2153, September.
    35. Lee, Chien-Chiang & Lee, Jun-De, 2009. "Energy prices, multiple structural breaks, and efficient market hypothesis," Applied Energy, Elsevier, vol. 86(4), pages 466-479, April.
    36. Ozdemir, Zeynel Abidin & Gokmenoglu, Korhan & Ekinci, Cagdas, 2013. "Persistence in crude oil spot and futures prices," Energy, Elsevier, vol. 59(C), pages 29-37.
    37. Gebre-Mariam, Yohannes Kebede, 2011. "Testing for unit roots, causality, cointegration, and efficiency: The case of the northwest US natural gas market," Energy, Elsevier, vol. 36(5), pages 3489-3500.
    38. Noguera, José, 2013. "Oil prices: Breaks and trends," Energy Economics, Elsevier, vol. 37(C), pages 60-67.
    39. Kanjilal, Kakali & Ghosh, Sajal, 2013. "Environmental Kuznet’s curve for India: Evidence from tests for cointegration with unknown structuralbreaks," Energy Policy, Elsevier, vol. 56(C), pages 509-515.
    40. Kaoru Kawamoto & Shigeyuki Hamori, 2011. "Market efficiency among futures with different maturities: Evidence from the crude oil futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 31(5), pages 487-501, May.
    41. Zhang, Yue-Jun & Wang, Zi-Yi, 2013. "Investigating the price discovery and risk transfer functions in the crude oil and gasoline futures markets: Some empirical evidence," Applied Energy, Elsevier, vol. 104(C), pages 220-228.
    42. Maslyuk, Svetlana & Smyth, Russell, 2009. "Cointegration between oil spot and future prices of the same and different grades in the presence of structural change," Energy Policy, Elsevier, vol. 37(5), pages 1687-1693, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Pei-Fen & Lee, Chien-Chiang & Zeng, Jhih-Hong, 2014. "The relationship between spot and futures oil prices: Do structural breaks matter?," Energy Economics, Elsevier, vol. 43(C), pages 206-217.
    2. Miroslava Zavadska & Lucía Morales & Joseph Coughlan, 2018. "The Lead–Lag Relationship between Oil Futures and Spot Prices—A Literature Review," IJFS, MDPI, vol. 6(4), pages 1-22, October.
    3. Cumhur ÞAHÝN & Hüseyin ALTAY, 2016. "Examination of the Relationship between Turkey’s Credit Default Swap (CDS) Points and Unemployment," Eurasian Business & Economics Journal, Eurasian Academy Of Sciences, vol. 4(4), pages 52-67, January.
    4. Ketenci, Natalya, 2015. "Capital mobility in Russia," Russian Journal of Economics, Elsevier, vol. 1(4), pages 386-403.
    5. Ghosh, Sajal & Kanjilal, Kakali, 2014. "Long-term equilibrium relationship between urbanization, energy consumption and economic activity: Empirical evidence from India," Energy, Elsevier, vol. 66(C), pages 324-331.
    6. Wang, Jianli & Qiu, Shushu & Yick, Ho Yin, 2022. "The influence of the Shanghai crude oil futures on the global and domestic oil markets," Energy, Elsevier, vol. 245(C).
    7. Esra N. Kılcı & Burcu Kıran Baygın, 2019. "Analysis of the Relationship between Real Effective Exchange Rate, Common Equity Tier 1 Ratio and Return on Equity: Evidence from Turkey," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 7(2), pages 319-332, December.
    8. Sensoy, Ahmet & Hacihasanoglu, Erk, 2014. "Time-varying long range dependence in energy futures markets," Energy Economics, Elsevier, vol. 46(C), pages 318-327.
    9. Jena, Sangram Keshari & Tiwari, Aviral Kumar & Hammoudeh, Shawkat & Roubaud, David, 2019. "Distributional predictability between commodity spot and futures: Evidence from nonparametric causality-in-quantiles tests," Energy Economics, Elsevier, vol. 78(C), pages 615-628.
    10. Kanjilal, Kakali & Ghosh, Sajal, 2013. "Environmental Kuznet’s curve for India: Evidence from tests for cointegration with unknown structuralbreaks," Energy Policy, Elsevier, vol. 56(C), pages 509-515.
    11. Chiappini, Raphaël & Jégourel, Yves & Raymond, Paul, 2019. "Towards a worldwide integrated market? New evidence on the dynamics of U.S., European and Asian natural gas prices," Energy Economics, Elsevier, vol. 81(C), pages 545-565.
    12. Kristoufek, Ladislav & Vosvrda, Miloslav, 2014. "Commodity futures and market efficiency," Energy Economics, Elsevier, vol. 42(C), pages 50-57.
    13. Natalya Ketenci & Vasudeva N. R. Murthy, 2018. "Some determinants of life expectancy in the United States: results from cointegration tests under structural breaks," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 42(3), pages 508-525, July.
    14. Katircioğlu, Salih Turan, 2014. "Testing the tourism-induced EKC hypothesis: The case of Singapore," Economic Modelling, Elsevier, vol. 41(C), pages 383-391.
    15. Natalya KETENCİ & Ebru Tomris AYDOĞAN, 2019. "Determinants of Economic Growth in Turkey in the Presence of Structural Breaks," Sosyoekonomi Journal, Sosyoekonomi Society, issue 27(42).
    16. Mamatzakis, E & Remoundos, P, 2010. "Threshold Cointegration in BRENT crude futures market," MPRA Paper 19978, University Library of Munich, Germany.
    17. Ghosh, Sajal & Kanjilal, Kakali, 2016. "Co-movement of international crude oil price and Indian stock market: Evidences from nonlinear cointegration tests," Energy Economics, Elsevier, vol. 53(C), pages 111-117.
    18. Peri, Massimo & Baldi, Lucia, 2013. "The effect of biofuel policies on feedstock market: Empirical evidence for rapeseed oil prices in EU," Resource and Energy Economics, Elsevier, vol. 35(1), pages 18-37.
    19. Wang, Yudong & Wu, Chongfeng, 2013. "Are crude oil spot and futures prices cointegrated? Not always!," Economic Modelling, Elsevier, vol. 33(C), pages 641-650.
    20. de Jesus, Diego Pitta & Lenin Souza Bezerra, Bruno Felipe & da Nóbrega Besarria, Cássio, 2020. "The non-linear relationship between oil prices and stock prices: Evidence from oil-importing and oil-exporting countries," Research in International Business and Finance, Elsevier, vol. 54(C).

    More about this item

    Keywords

    Energy commodity; Futures market efficiency; Multiple structural breaks;
    All these keywords.

    JEL classification:

    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ2:2017-06-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.