IDEAS home Printed from https://ideas.repec.org/a/sae/envira/v30y1998i6p957-973.html
   My bibliography  Save this article

Spatial Nonstationarity and Autoregressive Models

Author

Listed:
  • C Brunsdon

    (Department of Town and Country Planning, University of Newcastle, Newcastle upon Tyne NE1 7RU, England)

  • A S Fotheringham
  • M Charlton

Abstract

Until relatively recently, the emphasis of spatial analysis was on the investigation of global models and global processes. Recent research, however, has tended to explore exceptions to general processes, and techniques have been developed which have as their focus the investigation of spatial variations in local relationships. One of these techniques, known as geographically weighted regression (GWR), developed by the authors is used here to investigate spatial variations in spatial association. The particular framework in which spatial association is examined here is the spatial autoregressive model of Ord, although the technique can easily be applied to any form of spatial autocorrelation measurement. The conceptual and theoretical foundations of GWR applied to the Ord model are followed by an empirical example which uses data on owner-occupation in the housing market of Tyne and Wear in northeast England where the problems of relying on global models of spatial association are demonstrated. This empirical investigation of spatial variations in spatial autocorrelation prompts a further discussion of several issues concerning the statistical technique.

Suggested Citation

  • C Brunsdon & A S Fotheringham & M Charlton, 1998. "Spatial Nonstationarity and Autoregressive Models," Environment and Planning A, , vol. 30(6), pages 957-973, June.
  • Handle: RePEc:sae:envira:v:30:y:1998:i:6:p:957-973
    DOI: 10.1068/a300957
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1068/a300957
    Download Restriction: no

    File URL: https://libkey.io/10.1068/a300957?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Deng-Kui & Mei, Chang-Lin & Wang, Ning, 2019. "Tests for spatial dependence and heterogeneity in spatially autoregressive varying coefficient models with application to Boston house price analysis," Regional Science and Urban Economics, Elsevier, vol. 79(C).
    2. Lebreton, Marie, 2005. "The NCSTAR model as an alternative to the GWR model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(1), pages 77-84.
    3. Yuanshuo Xu & Mildred E Warner, 2016. "Does devolution crowd out development? A spatial analysis of US local government fiscal effort," Environment and Planning A, , vol. 48(5), pages 871-890, May.
    4. Sunak, Yasin & Madlener, Reinhard, 2012. "The Impact of Wind Farms on Property Values: A Geographically Weighted Hedonic Pricing Model," FCN Working Papers 3/2012, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised Mar 2013.
    5. Geniaux, Ghislain & Martinetti, Davide, 2018. "A new method for dealing simultaneously with spatial autocorrelation and spatial heterogeneity in regression models," Regional Science and Urban Economics, Elsevier, vol. 72(C), pages 74-85.
    6. Hans-Friedrich Eckey & Reinhold Kosfeld & Matthias Türck, 2007. "Regional Convergence in Germany: a Geographically Weighted Regression Approach," Spatial Economic Analysis, Taylor & Francis Journals, vol. 2(1), pages 45-64.
    7. Stephen Matthews & Tse-Chuan Yang, 2012. "Mapping the results of local statistics," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 26(6), pages 151-166.
    8. Jesús Mur & Fernando López & Ana Angulo, 2009. "Testing the hypothesis of stability in spatial econometric models," Papers in Regional Science, Wiley Blackwell, vol. 88(2), pages 409-444, June.
    9. Sven Müller, 2012. "Identifying spatial nonstationarity in German regional firm start-up data," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 32(2), pages 113-132, September.
    10. Jesús Mur & Fernando López & Ana Angulo, 2010. "Instability in spatial error models: an application to the hypothesis of convergence in the European case," Journal of Geographical Systems, Springer, vol. 12(3), pages 259-280, September.
    11. Chunzhu Wei & Mark Padgham & Pablo Cabrera Barona & Thomas Blaschke, 2017. "Scale-Free Relationships between Social and Landscape Factors in Urban Systems," Sustainability, MDPI, vol. 9(1), pages 1-19, January.
    12. Shijie Li & Chunshan Zhou & Shaojian Wang & Shuang Gao & Zhitao Liu, 2019. "Spatial Heterogeneity in the Determinants of Urban Form: An Analysis of Chinese Cities with a GWR Approach," Sustainability, MDPI, vol. 11(2), pages 1-16, January.
    13. Alexis Comber & Paul Harris, 2018. "Geographically weighted elastic net logistic regression," Journal of Geographical Systems, Springer, vol. 20(4), pages 317-341, October.
    14. Eckey, Hans-Friedrich & Türck, Matthias, 2005. "Convergence of EU-regions: A literature report," Volkswirtschaftliche Diskussionsbeiträge 80, University of Kassel, Faculty of Economics and Management.
    15. Declan Curran, 2012. "British regional growth and sectoral trends: global and local spatial econometric approaches," Applied Economics, Taylor & Francis Journals, vol. 44(17), pages 2187-2201, June.
    16. Jülide Yildirim & Nadir Öcal, 2013. "Analysing The Determinants Of Terrorism In Turkey Using Geographically Weighted Regression," Defence and Peace Economics, Taylor & Francis Journals, vol. 24(3), pages 195-209, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envira:v:30:y:1998:i:6:p:957-973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.