IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v64y2017icp373-383.html
   My bibliography  Save this article

Spatial statistical methods applied to the 2015 Brazilian energy distribution benchmarking model: Accounting for unobserved determinants of inefficiencies

Author

Listed:
  • Gil, Guilherme Dôco Roberti
  • Costa, Marcelo Azevedo
  • Lopes, Ana Lúcia Miranda
  • Mayrink, Vinícius Diniz

Abstract

In 2015 the Brazilian regulator presented a DEA benchmarking model to set the regulatory operational cost goals, to be reached in four years for 61 electricity distribution utilities. The DEA model uses: adjusted operational cost as the input variable, seven output variables and weight restrictions. Although non-discretionary variables or environmental variables are available in the dataset, the regulator argued that no statistically significant correlation was found between the DEA efficiency scores and the non-discretionary variables. This study evaluates the statistical correlation between the DEA efficiency scores and the available environmental variables. Spatial statistic methods are used to show that the efficiency scores are geographically correlated. Furthermore, due to Brazil's environmental diversity and large territory it is unlikely that only one environmental component is sufficient to adjust inefficiencies across the Brazilian territory. Thus, a new combined environmental variable is proposed. Finally, a second stage model using the proposed environmental variable and accounting for a spatial latent structure is presented. Results show major differences between original and corrected efficiency scores, mainly for utilities located in harsh environments and which originally achieved lower efficiency scores.

Suggested Citation

  • Gil, Guilherme Dôco Roberti & Costa, Marcelo Azevedo & Lopes, Ana Lúcia Miranda & Mayrink, Vinícius Diniz, 2017. "Spatial statistical methods applied to the 2015 Brazilian energy distribution benchmarking model: Accounting for unobserved determinants of inefficiencies," Energy Economics, Elsevier, vol. 64(C), pages 373-383.
  • Handle: RePEc:eee:eneeco:v:64:y:2017:i:c:p:373-383
    DOI: 10.1016/j.eneco.2017.04.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988317301160
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2017.04.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexandra Schmidt & Ajax Moreira & Steven Helfand & Thais Fonseca, 2009. "Spatial stochastic frontier models: accounting for unobserved local determinants of inefficiency," Journal of Productivity Analysis, Springer, vol. 31(2), pages 101-112, April.
    2. Costa, Marcelo Azevedo & Lopes, Ana Lúcia Miranda & de Pinho Matos, Giordano Bruno Braz, 2015. "Statistical evaluation of Data Envelopment Analysis versus COLS Cobb–Douglas benchmarking models for the 2011 Brazilian tariff revision," Socio-Economic Planning Sciences, Elsevier, vol. 49(C), pages 47-60.
    3. Cinzia Daraio & Léopold Simar, 2005. "Introducing Environmental Variables in Nonparametric Frontier Models: a Probabilistic Approach," Journal of Productivity Analysis, Springer, vol. 24(1), pages 93-121, September.
    4. Kelsall J. & Eld J.W., 2002. "Modeling Spatial Variation in Disease Risk: A Geostatistical Approach," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 692-701, September.
    5. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    6. Ray, Subhash C. & Ghose, Arpita, 2014. "Production efficiency in Indian agriculture: An assessment of the post green revolution years," Omega, Elsevier, vol. 44(C), pages 58-69.
    7. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    8. Cinzia Daraio & Léopold Simar, 2007. "Conditional nonparametric frontier models for convex and nonconvex technologies: a unifying approach," Journal of Productivity Analysis, Springer, vol. 28(1), pages 13-32, October.
    9. Johnson, Andrew L. & Kuosmanen, Timo, 2012. "One-stage and two-stage DEA estimation of the effects of contextual variables," European Journal of Operational Research, Elsevier, vol. 220(2), pages 559-570.
    10. Kuosmanen, Timo, 2006. "Stochastic Nonparametric Envelopment of Data: Combining Virtues of SFA and DEA in a Unified Framework," Discussion Papers 11864, MTT Agrifood Research Finland.
    11. Rajiv D. Banker & Richard C. Morey, 1986. "Efficiency Analysis for Exogenously Fixed Inputs and Outputs," Operations Research, INFORMS, vol. 34(4), pages 513-521, August.
    12. Daraio, Cinzia & Simar, Leopold & Wilson, Paul, 2010. "Testing whether two-stage estimation is meaningful in non-parametric models of production," LIDAM Discussion Papers ISBA 2010031, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    13. Subhash C. Ray, 1991. "Resource-Use Efficiency in Public Schools: A Study of Connecticut Data," Management Science, INFORMS, vol. 37(12), pages 1620-1628, December.
    14. Yu, William & Jamasb, Tooraj & Pollitt, Michael, 2009. "Does weather explain cost and quality performance? An analysis of UK electricity distribution companies," Energy Policy, Elsevier, vol. 37(11), pages 4177-4188, November.
    15. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    16. Andrew Johnson & Timo Kuosmanen, 2011. "One-stage estimation of the effects of operational conditions and practices on productive performance: asymptotically normal and efficient, root-n consistent StoNEZD method," Journal of Productivity Analysis, Springer, vol. 36(2), pages 219-230, October.
    17. Simar, Leopold & Wilson, Paul W., 2007. "Estimation and inference in two-stage, semi-parametric models of production processes," Journal of Econometrics, Elsevier, vol. 136(1), pages 31-64, January.
    18. Stevenson, Rodney E., 1980. "Likelihood functions for generalized stochastic frontier estimation," Journal of Econometrics, Elsevier, vol. 13(1), pages 57-66, May.
    19. Greene, William H., 1990. "A Gamma-distributed stochastic frontier model," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 141-163.
    20. Ray, Subhash C., 1988. "Data envelopment analysis, nondiscretionary inputs and efficiency: an alternative interpretation," Socio-Economic Planning Sciences, Elsevier, vol. 22(4), pages 167-176.
    21. Rajiv D. Banker & Ram Natarajan, 2008. "Evaluating Contextual Variables Affecting Productivity Using Data Envelopment Analysis," Operations Research, INFORMS, vol. 56(1), pages 48-58, February.
    22. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    23. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    24. Richmond, J, 1974. "Estimating the Efficiency of Production," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 15(2), pages 515-521, June.
    25. Timo Kuosmanen & Mika Kortelainen, 2012. "Stochastic non-smooth envelopment of data: semi-parametric frontier estimation subject to shape constraints," Journal of Productivity Analysis, Springer, vol. 38(1), pages 11-28, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brandão, Roberto & Tolmasquim, Maurício T. & Maestrini, Marcelo & Tavares, Arthur Felipe & Castro, Nivalde J. & Ozorio, Luiz & Chaves, Ana Carolina, 2021. "Determinants of the economic performance of Brazilian electricity distributors," Utilities Policy, Elsevier, vol. 68(C).
    2. da Silva, Aline Veronese & Costa, Marcelo Azevedo & Lopes, Ana Lúcia Miranda & do Carmo, Gabriela Miranda, 2019. "A close look at second stage data envelopment analysis using compound error models and the Tobit model," Socio-Economic Planning Sciences, Elsevier, vol. 65(C), pages 111-126.
    3. Álvaro L. Ferreira & Tomás C. de Castro & Marcelo A. Costa & Sérgio H. R. Ribeiro & Iguatinan G. Monteiro, 2023. "Financial sustainability disparities among energy distribution companies: a multi-factor study case in Brazil," SN Business & Economics, Springer, vol. 3(7), pages 1-35, July.
    4. Yiorgos Gadanakis & Francisco José Areal, 2020. "Accounting for rainfall and the length of growing season in technical efficiency analysis," Operational Research, Springer, vol. 20(4), pages 2583-2608, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
    2. da Silva, Aline Veronese & Costa, Marcelo Azevedo & Lopes, Ana Lúcia Miranda & do Carmo, Gabriela Miranda, 2019. "A close look at second stage data envelopment analysis using compound error models and the Tobit model," Socio-Economic Planning Sciences, Elsevier, vol. 65(C), pages 111-126.
    3. Mai, Nhat Chi, 2015. "Efficiency of the banking system in Vietnam under financial liberalization," OSF Preprints qsf6d, Center for Open Science.
    4. Banker, Rajiv & Natarajan, Ram & Zhang, Daqun, 2019. "Two-stage estimation of the impact of contextual variables in stochastic frontier production function models using Data Envelopment Analysis: Second stage OLS versus bootstrap approaches," European Journal of Operational Research, Elsevier, vol. 278(2), pages 368-384.
    5. Massimo Finocchiaro Castro & Calogero Guccio & Ilde Rizzo, 2014. "An assessment of the waste effects of corruption on infrastructure provision," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 21(4), pages 813-843, August.
    6. Manuel Salas-Velasco, 2020. "Measuring and explaining the production efficiency of Spanish universities using a non-parametric approach and a bootstrapped-truncated regression," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(2), pages 825-846, February.
    7. Fabio Pammolli & Francesco Porcelli & Francesco Vidoli & Guido Borà, 2014. "La spesa sanitaria delle Regioni in Italia - Saniregio 3," Working Papers CERM 02-2014, Competitività, Regole, Mercati (CERM).
    8. Fabio Pammolli & Francesco Porcelli & Francesco Vidoli & Guido Borà, 2015. "La spesa sanitaria delle Regioni in Italia - Saniregio 2015," Working Papers CERM 01-2015, Competitività, Regole, Mercati (CERM), revised 04 Jan 2016.
    9. Veronese da Silva, Aline & Costa, Marcelo Azevedo & Lopes-Ahn, Ana Lúcia, 2022. "Accounting multiple environmental variables in DEA energy transmission benchmarking modelling: The 2019 Brazilian case," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    10. Christopher F. Parmeter & Valentin Zelenyuk, 2019. "Combining the Virtues of Stochastic Frontier and Data Envelopment Analysis," Operations Research, INFORMS, vol. 67(6), pages 1628-1658, November.
    11. Nguyen, Trang T.T. & Prior, Diego & Van Hemmen, Stefan, 2020. "Stochastic semi-nonparametric frontier approach for tax administration efficiency measure: Evidence from a cross-country study," Economic Analysis and Policy, Elsevier, vol. 66(C), pages 137-153.
    12. Núñez, F. & Arcos-Vargas, A. & Villa, G., 2020. "Efficiency benchmarking and remuneration of Spanish electricity distribution companies," Utilities Policy, Elsevier, vol. 67(C).
    13. Bjørndal, Endre & Bjørndal, Mette & Cullmann, Astrid & Nieswand, Maria, 2018. "Finding the right yardstick: Regulation of electricity networks under heterogeneous environments," European Journal of Operational Research, Elsevier, vol. 265(2), pages 710-722.
    14. Luis R. Murillo‐Zamorano, 2004. "Economic Efficiency and Frontier Techniques," Journal of Economic Surveys, Wiley Blackwell, vol. 18(1), pages 33-77, February.
    15. Touati-Tliba, Mohamed, 2024. "Comparative performance of Algeria's education districts: The Influence of colonial legacy through cultural capital," Socio-Economic Planning Sciences, Elsevier, vol. 91(C).
    16. Eskelinen, Juha & Kuosmanen, Timo, 2013. "Intertemporal efficiency analysis of sales teams of a bank: Stochastic semi-nonparametric approach," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5163-5175.
    17. Andrew Johnson & Timo Kuosmanen, 2011. "One-stage estimation of the effects of operational conditions and practices on productive performance: asymptotically normal and efficient, root-n consistent StoNEZD method," Journal of Productivity Analysis, Springer, vol. 36(2), pages 219-230, October.
    18. José Manuel Cordero & Cristina Polo & Daniel Santín & Gabriela Sicilia, 2016. "Monte-Carlo Comparison of Conditional Nonparametric Methods and Traditional Approaches to Include Exogenous Variables," Pacific Economic Review, Wiley Blackwell, vol. 21(4), pages 483-497, October.
    19. Fabio Pammolli & Francesco Porcelli & Francesco Vidoli & Monica Auteri & Guido Borà, 2017. "La spesa sanitaria delle Regioni in Italia - Saniregio2017," Working Papers CERM 01-2017, Competitività, Regole, Mercati (CERM).
    20. Roland Banya & Nicholas Biekpe, 2018. "Banking efficiency and its determinants in selected frontier african markets," Economic Change and Restructuring, Springer, vol. 51(1), pages 69-95, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:64:y:2017:i:c:p:373-383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.