IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v35y2019i04p816-841_00.html
   My bibliography  Save this article

Inference After Model Averaging In Linear Regression Models

Author

Listed:
  • Zhang, Xinyu
  • Liu, Chu-An

Abstract

This article considers the problem of inference for nested least squares averaging estimators. We study the asymptotic behavior of the Mallows model averaging estimator (MMA; Hansen, 2007) and the jackknife model averaging estimator (JMA; Hansen and Racine, 2012) under the standard asymptotics with fixed parameters setup. We find that both MMA and JMA estimators asymptotically assign zero weight to the under-fitted models, and MMA and JMA weights of just-fitted and over-fitted models are asymptotically random. Building on the asymptotic behavior of model weights, we derive the asymptotic distributions of MMA and JMA estimators and propose a simulation-based confidence interval for the least squares averaging estimator. Monte Carlo simulations show that the coverage probabilities of proposed confidence intervals achieve the nominal level.

Suggested Citation

  • Zhang, Xinyu & Liu, Chu-An, 2019. "Inference After Model Averaging In Linear Regression Models," Econometric Theory, Cambridge University Press, vol. 35(4), pages 816-841, August.
  • Handle: RePEc:cup:etheor:v:35:y:2019:i:04:p:816-841_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466618000269/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
    2. Kevin Huynh, 2024. "Weighted-Average Least Squares for Negative Binomial Regression," Papers 2404.11324, arXiv.org.
    3. Sun, Yuying & Hong, Yongmiao & Wang, Shouyang & Zhang, Xinyu, 2023. "Penalized time-varying model averaging," Journal of Econometrics, Elsevier, vol. 235(2), pages 1355-1377.
    4. Guillaume Coqueret, 2023. "Forking paths in financial economics," Papers 2401.08606, arXiv.org.
    5. Huihang Liu & Xinyu Zhang, 2023. "Frequentist model averaging for undirected Gaussian graphical models," Biometrics, The International Biometric Society, vol. 79(3), pages 2050-2062, September.
    6. Liao, Jun & Zou, Guohua, 2020. "Corrected Mallows criterion for model averaging," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    7. Fang, Fang & Li, Jialiang & Xia, Xiaochao, 2022. "Semiparametric model averaging prediction for dichotomous response," Journal of Econometrics, Elsevier, vol. 229(2), pages 219-245.
    8. Yulia Kotlyarova & Marcia M. A. Schafgans & Victoria Zinde-Walsh, 2021. "Rates of Expansions for Functional Estimators," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 121-139, December.
    9. Giuseppe Luca & Jan R. Magnus & Franco Peracchi, 2023. "Weighted-Average Least Squares (WALS): Confidence and Prediction Intervals," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1637-1664, April.
    10. Sun, Yuying & Hong, Yongmiao & Lee, Tae-Hwy & Wang, Shouyang & Zhang, Xinyu, 2021. "Time-varying model averaging," Journal of Econometrics, Elsevier, vol. 222(2), pages 974-992.
    11. Wenchao Xu & Xinyu Zhang, 2024. "On Asymptotic Optimality of Least Squares Model Averaging When True Model Is Included," Papers 2411.09258, arXiv.org.
    12. Sun, Yuying & Zhang, Xinyu & Wan, Alan T.K. & Wang, Shouyang, 2022. "Model averaging for interval-valued data," European Journal of Operational Research, Elsevier, vol. 301(2), pages 772-784.
    13. De Luca, Giuseppe & Magnus, Jan R. & Peracchi, Franco, 2022. "Sampling properties of the Bayesian posterior mean with an application to WALS estimation," Journal of Econometrics, Elsevier, vol. 230(2), pages 299-317.
    14. Giuseppe De Luca & Jan Magnus & Franco Peracchi, 2022. "Asymptotic properties of the weighted average least squares (WALS) estimator," Tinbergen Institute Discussion Papers 22-022/III, Tinbergen Institute.
    15. Fang, Fang & Liu, Minhan, 2020. "Limit of the optimal weight in least squares model averaging with non-nested models," Economics Letters, Elsevier, vol. 196(C).
    16. Feng, Yang & Liu, Qingfeng & Okui, Ryo, 2020. "On the sparsity of Mallows model averaging estimator," Economics Letters, Elsevier, vol. 187(C).
    17. Michael Schomaker & Christian Heumann, 2020. "When and when not to use optimal model averaging," Statistical Papers, Springer, vol. 61(5), pages 2221-2240, October.
    18. Fang, Fang & Yu, Zhou, 2020. "Model averaging assisted sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    19. Qiu, Yue & Wang, Zongrun & Xie, Tian & Zhang, Xinyu, 2021. "Forecasting Bitcoin realized volatility by exploiting measurement error under model uncertainty," Journal of Empirical Finance, Elsevier, vol. 62(C), pages 179-201.
    20. Fang, Fang & Yang, Qiwei & Tian, Wenling, 2022. "Cross-validation for selecting the penalty factor in least squares model averaging," Economics Letters, Elsevier, vol. 217(C).
    21. Boot, Tom, 2023. "Joint inference based on Stein-type averaging estimators in the linear regression model," Journal of Econometrics, Elsevier, vol. 235(2), pages 1542-1563.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Chulwoo & Park, Frank C., 2022. "A geometric framework for covariance dynamics," Journal of Banking & Finance, Elsevier, vol. 134(C).
    2. Kearney, Fearghal & Shang, Han Lin & Sheenan, Lisa, 2019. "Implied volatility surface predictability: The case of commodity markets," Journal of Banking & Finance, Elsevier, vol. 108(C).
    3. Małgorzata Doman & Ryszard Doman, 2013. "Dynamic linkages between stock markets: the effects of crises and globalization," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 12(2), pages 87-112, August.
    4. Evangelos Salachas & Georgios P. Kouretas & Nikiforos T. Laopodis, 2024. "The term structure of interest rates and economic activity: Evidence from the COVID‐19 pandemic," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(4), pages 1018-1041, July.
    5. Mohamed CHIKHI & Claude DIEBOLT, 2022. "Testing the weak form efficiency of the French ETF market with the LSTAR-ANLSTGARCH approach using a semiparametric estimation," Eastern Journal of European Studies, Centre for European Studies, Alexandru Ioan Cuza University, vol. 13, pages 228-253, June.
    6. Eleftheria Kafousaki & Stavros Degiannakis, 2023. "Forecasting VIX: the illusion of forecast evaluation criteria," Economics and Business Letters, Oviedo University Press, vol. 12(3), pages 231-240.
    7. Ding, Jing & Jiang, Lei & Liu, Xiaohui & Peng, Liang, 2023. "Nonparametric tests for market timing ability using daily mutual fund returns," Journal of Economic Dynamics and Control, Elsevier, vol. 150(C).
    8. Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023. "Forecasting electricity prices with expert, linear, and nonlinear models," International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
    9. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    10. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    11. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Decoupling the short- and long-term behavior of stochastic volatility," CREATES Research Papers 2017-26, Department of Economics and Business Economics, Aarhus University.
    12. Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016. "Do We Need High Frequency Data to Forecast Variances?," Annals of Economics and Statistics, GENES, issue 123-124, pages 135-174.
    13. Ferrari, Davide & Ravazzolo, Francesco & Vespignani, Joaquin, 2021. "Forecasting energy commodity prices: A large global dataset sparse approach," Energy Economics, Elsevier, vol. 98(C).
    14. Lu Wang & Feng Ma & Guoshan Liu, 2020. "Forecasting stock volatility in the presence of extreme shocks: Short‐term and long‐term effects," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 797-810, August.
    15. Niels Haldrup & Carsten P. T. Rosenskjold, 2019. "A Parametric Factor Model of the Term Structure of Mortality," Econometrics, MDPI, vol. 7(1), pages 1-22, March.
    16. Naimoli, Antonio & Storti, Giuseppe, 2019. "Heterogeneous component multiplicative error models for forecasting trading volumes," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1332-1355.
    17. Andrea Bucci, 2020. "Realized Volatility Forecasting with Neural Networks," Journal of Financial Econometrics, Oxford University Press, vol. 18(3), pages 502-531.
    18. Xu, Yanyan & Huang, Dengshi & Ma, Feng & Qiao, Gaoxiu, 2019. "Liquidity and realized range-based volatility forecasting: Evidence from China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1102-1113.
    19. Dimitrakopoulos, Stefanos & Tsionas, Mike, 2019. "Ordinal-response GARCH models for transaction data: A forecasting exercise," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1273-1287.
    20. Harry-Paul Vander Elst, 2015. "FloGARCH: Realizing Long Memory and Asymmetries in Returns Valitility," Working Papers ECARES ECARES 2015-12, ULB -- Universite Libre de Bruxelles.

    More about this item

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:35:y:2019:i:04:p:816-841_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.