IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2404.11324.html
   My bibliography  Save this paper

Weighted-Average Least Squares for Negative Binomial Regression

Author

Listed:
  • Kevin Huynh

Abstract

Model averaging methods have become an increasingly popular tool for improving predictions and dealing with model uncertainty, especially in Bayesian settings. Recently, frequentist model averaging methods such as information theoretic and least squares model averaging have emerged. This work focuses on the issue of covariate uncertainty where managing the computational resources is key: The model space grows exponentially with the number of covariates such that averaged models must often be approximated. Weighted-average least squares (WALS), first introduced for (generalized) linear models in the econometric literature, combines Bayesian and frequentist aspects and additionally employs a semiorthogonal transformation of the regressors to reduce the computational burden. This paper extends WALS for generalized linear models to the negative binomial (NB) regression model for overdispersed count data. A simulation experiment and an empirical application using data on doctor visits were conducted to compare the predictive power of WALS for NB regression to traditional estimators. The results show that WALS for NB improves on the maximum likelihood estimator in sparse situations and is competitive with lasso while being computationally more efficient.

Suggested Citation

  • Kevin Huynh, 2024. "Weighted-Average Least Squares for Negative Binomial Regression," Papers 2404.11324, arXiv.org.
  • Handle: RePEc:arx:papers:2404.11324
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2404.11324
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Xinyu & Liu, Chu-An, 2019. "Inference After Model Averaging In Linear Regression Models," Econometric Theory, Cambridge University Press, vol. 35(4), pages 816-841, August.
    2. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    3. R. Winkler & Javier Muñoz & José Cervera & José Bernardo & Gail Blattenberger & Joseph Kadane & Dennis Lindley & Allan Murphy & Robert Oliver & David Ríos-Insua, 1996. "Scoring rules and the evaluation of probabilities," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 5(1), pages 1-60, June.
    4. Zeileis, Achim & Croissant, Yves, 2010. "Extended Model Formulas in R: Multiple Parts and Multiple Responses," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 34(i01).
    5. Xinyu Zhang & Dalei Yu & Guohua Zou & Hua Liang, 2016. "Optimal Model Averaging Estimation for Generalized Linear Models and Generalized Linear Mixed-Effects Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1775-1790, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
    2. Huihang Liu & Xinyu Zhang, 2023. "Frequentist model averaging for undirected Gaussian graphical models," Biometrics, The International Biometric Society, vol. 79(3), pages 2050-2062, September.
    3. Sun, Yuying & Hong, Yongmiao & Wang, Shouyang & Zhang, Xinyu, 2023. "Penalized time-varying model averaging," Journal of Econometrics, Elsevier, vol. 235(2), pages 1355-1377.
    4. De Luca, Giuseppe & Magnus, Jan R. & Peracchi, Franco, 2022. "Sampling properties of the Bayesian posterior mean with an application to WALS estimation," Journal of Econometrics, Elsevier, vol. 230(2), pages 299-317.
    5. Zhang, Xiaomeng & Zhang, Xinyu, 2023. "Optimal model averaging based on forward-validation," Journal of Econometrics, Elsevier, vol. 237(2).
    6. Yang Feng & Qingfeng Liu, 2020. "Nested Model Averaging on Solution Path for High-dimensional Linear Regression," Papers 2005.08057, arXiv.org.
    7. Steven F. Lehrer & Tian Xie, 2022. "The Bigger Picture: Combining Econometrics with Analytics Improves Forecasts of Movie Success," Management Science, INFORMS, vol. 68(1), pages 189-210, January.
    8. Giuseppe De Luca & Jan Magnus & Franco Peracchi, 2022. "Asymptotic properties of the weighted average least squares (WALS) estimator," Tinbergen Institute Discussion Papers 22-022/III, Tinbergen Institute.
    9. Fang, Fang & Liu, Minhan, 2020. "Limit of the optimal weight in least squares model averaging with non-nested models," Economics Letters, Elsevier, vol. 196(C).
    10. Fang, Fang & Yu, Zhou, 2020. "Model averaging assisted sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    11. Giuseppe Luca & Jan R. Magnus & Franco Peracchi, 2023. "Weighted-Average Least Squares (WALS): Confidence and Prediction Intervals," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1637-1664, April.
    12. Guillaume Coqueret, 2023. "Forking paths in financial economics," Papers 2401.08606, arXiv.org.
    13. Fang, Fang & Li, Jialiang & Xia, Xiaochao, 2022. "Semiparametric model averaging prediction for dichotomous response," Journal of Econometrics, Elsevier, vol. 229(2), pages 219-245.
    14. Yuying Sun & Shaoxin Hong & Zongwu Cai, 2023. "Optimal Local Model Averaging for Divergent-Dimensional Functional-Coefficient Regressions," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202309, University of Kansas, Department of Economics, revised Sep 2023.
    15. Zhang, Xinyu & Liu, Chu-An, 2023. "Model averaging prediction by K-fold cross-validation," Journal of Econometrics, Elsevier, vol. 235(1), pages 280-301.
    16. Wenchao Xu & Xinyu Zhang, 2024. "On Asymptotic Optimality of Least Squares Model Averaging When True Model Is Included," Papers 2411.09258, arXiv.org.
    17. Fang, Fang & Yang, Qiwei & Tian, Wenling, 2022. "Cross-validation for selecting the penalty factor in least squares model averaging," Economics Letters, Elsevier, vol. 217(C).
    18. Chen, Yi-Ting & Liu, Chu-An, 2023. "Model averaging for asymptotically optimal combined forecasts," Journal of Econometrics, Elsevier, vol. 235(2), pages 592-607.
    19. David Kaplan, 2021. "On the Quantification of Model Uncertainty: A Bayesian Perspective," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 215-238, March.
    20. repec:jss:jstsof:36:i03 is not listed on IDEAS
    21. Jeffrey S. Racine & Qi Li & Dalei Yu & Li Zheng, 2023. "Optimal Model Averaging of Mixed-Data Kernel-Weighted Spline Regressions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1251-1261, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2404.11324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.